K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

A=1+4+42+43+...+499

=>4A=4+42+43+44+...+4100

=>4A-A=(4+42+43+44+...+4100)-(1+4+42+43+...+499)

=>3A=4100-1 

=>A=\(\frac{4^{100}-1}{3}\) < 4100

=>A<B

 

14 tháng 2 2016

     \(A=1+4+4^2+4^3+...+4^{99}\)

=> \(4A=4+4^2+4^3+4^4+...+4^{100}\)

=> \(4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\)

=> \(3A=4^{100}-1\)

=> \(A=\frac{4^{100}-1}{3}\)

Ta có : \(B=4^{100}\)   =>  \(\frac{B}{3}=\frac{4^{100}}{3}\)

Vì    \(4^{100}-1<4^{100}\)     =>   \(\frac{4^{100}-1}{3}<\frac{4^{100}}{3}\)    =>  \(A<\frac{B}{3}\)   (đpcm)

11 tháng 4 2016

Câu 1.   

a).  2A = 8 + 2 3 + 2 4 + . . . + 2 21.

=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20).  = 2 21.

     

b).          (x + 1) + ( x + 2 ) + . . .  . . . . . + (x + 100)  = 5750

=>             x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100     =  5750

=>   ( 1 + 2 + 3 + . .  . + 100) + ( x + x + x . . . . . . . + x )   =  5750

=>             101 . 50              +                100 x                          = 5750

                                                         100 x + 5050      =  5750

                                                         100 x     = 5750 – 5050

                                                         100 x     =  700

                                                                x     =  7

                   

 

 

 

 

                   101 . 50              +                100 x                          = 5750

                                                         100 x + 5050      =  5750

                                                         100 x     = 5750 – 5050

                                                         100 x     =  700

                                                                x     =  7

12 tháng 4 2016

Câu 1.   a).  2A = 8 + 2 3 + 2 4 + . . . + 2 21.

=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20).  = 2 21.

       b).          (x + 1) + ( x + 2 ) + . . .  . . . . . + (x + 100)  = 5750

=>             x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100     =  5750

=>   ( 1 + 2 + 3 + . .  . + 100) + ( x + x + x . . . . . . . + x )   =  5750

=>                101 . 50              +                  100 x                 = 5750

                                                         100 x + 5050      =  5750

                                                         100 x     = 5750 – 5050

                                                         100 x     =  700

                                                                x     =  7

27 tháng 12 2015

Bài nào không hiểu thì mình giải cho 

27 tháng 12 2015

dễ 

18 tháng 3 2016

Đặt biểu thức trên là *

Với n=1 thì => * <=> 13=\(\frac{1^2\left(1+1\right)^2}{4}\left(đúng\right)\)

Giả sử * đúng vói n=k => * <=> 13+...+k3=\(\frac{k^2\left(k+1\right)^2}{4}\)

Cần c/m * cũng đúng với n=k+1

Thật vậy với n=k+1

=> * <=> 13 + ... + k3 + ( k + 1 )3=\(\frac{\left(k+1\right)^2.\left(k+2\right)^2}{4}\)

<=> \(\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k+1\right)^{2.}.\left(k+2\right)^2}{4}\Leftrightarrow\frac{k^2}{4}+k+1=\frac{\left(k+2\right)^2}{4}\)

<=> \(\frac{\left(k+2\right)^2}{4}=\frac{\left(k+2\right)^2}{4}\)

=> * đúng với n=k+1

Vậy * đúng với mọi số tự nhiên nϵN

18 tháng 3 2016

Sáng Ngọc quy nạp ak bạn!!

8 tháng 8 2016

 Ta có:  a +b +c = 0:

=> (a + b + c)2 = 0 
=> a² + b² + c² + 2(ab + bc + ca) = 0 
=> a² + b² + c² = -2(ab + bc + ca)    (1

Mặt khác:

a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²)    (cộng 2 vế cho 2(a²b² + b²c² + c²a²)

=> [-2(ab + bc + ca)]2 = 4(a²b² + b²c² + c²a²)  ( do (1) ) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> ĐPCM.ok

8 tháng 8 2016

xl, mik mới chứng minh đc bằng và cũng có sai sót trong bài làmhiu

2 tháng 5 2017

Bài 3:

\(\left(\dfrac{1}{32}\right)^7=\dfrac{1^7}{32^7}=\dfrac{1}{32^7}=\dfrac{1}{\left(2^5\right)^7}=\dfrac{1}{2^{35}}\\ \left(\dfrac{1}{16}\right)^9=\dfrac{1^9}{16^9}=\dfrac{1}{16^9}=\dfrac{1}{\left(2^4\right)^9}=\dfrac{1}{2^{36}}\)

\(2^{35}< 2^{36}\) nên \(\dfrac{1}{2^{35}}>\dfrac{1}{2^{36}}\) hay \(\left(\dfrac{1}{32}\right)^7>\left(\dfrac{1}{16}\right)^9\)

3 tháng 4 2016

b,(*)chứng minh a=-3b:

xét a-b=2(a+b)

=>a-b=2a+2b

=>-b-2b=2a-a

=>-3b=a (đpcm) 

(*) tính a/b :

Từ -3b=a=>a/b=-3

(*)tính a và b:

Ta có : a-b=a/b=-3

             và 2(a+b)=a/b=-3

hệ pt<=>a-b=-3                   

        và 2(a+b)=-3    

       <=>a-b=-3    (1)

        và a+b=-1,5   (2)

Lấy (1)+(2),vế theo vế ta đc:

(a-b)+(a+b)=-3+(-1,5)

=>a-b+a+b=-4,5

=>2a=-4,5=>a=-2,25

Mà a-b=-3=>b=0,75

Vậy (a;b)=(-2,25;0,75)

 

 

 

3 tháng 4 2016

c) vì (x-y2+z)2 >= 0 với mọi x;y;z

      (y-2)2 >= 0 với mọi y

     (z+3)2 >= 0 với mọi z

=>(x-y2+z)2+(y-2)2+(z+3)2 >= 0 với mọi x;y;z

Mà theo đề: (x-y2+z)2+(y-2)2+(z+3)2=0

=>(x-y2+z)2=(y-2)2=(z+3)2=0

+)(y-2)2=0=>y=2

+)(z+3)2=0=>z=-3

Thay y=2;z=-3 vào (x-y2+z)2=0=>x-22+(-3)2=0=>x=-5

Vậy (x;y;z)=(-5;2;-3)

28 tháng 4 2016

a)Q(x) = 6x^3 - x^2 +1 -2x^3 +3x^-4x^3 -2x^4 +4x^2

\(=\left(3x^4-2x^4\right)+\left(6x^3-2x^3-4x^3\right)+\left(4x^2-x^2\right)+1\)

\(Q\left(x\right)=x^4+3x^2+1\)

b) \(Q\left(3\right)=3^4+3.3^2+1=81+27+1=109\)

\(Q\left(-3\right)=\left(-3\right)^4+3.\left(-3\right)^2+1=81+27+1=109\)

28 tháng 4 2016

chờ mình tí