Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)
\(\Rightarrow0\le x< \frac{9}{4}\)
c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)
Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)
Vậy \(MinR=-3\Leftrightarrow x=0\)
a, A\(=\left(\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{x-1}{\sqrt{x}}\) ĐK x>0 ;\(x\ne1;x\ne-1\)
\(A=\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4x\sqrt{x}-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}}{x-1}\)
\(A=\frac{4x\sqrt{x}}{x-1}.\frac{\sqrt{x}}{x-1}\)=\(\frac{4x^2}{\left(x-1\right)^2}\)
b, Để A =2 \(\Rightarrow\frac{4x^2}{\left(x-1\right)^2}=2\Rightarrow4x^2=2\left(x-1\right)^2\)
<=> \(4x^2=2x^2-4x+2\)
<=> \(2x^2+4x-2=0\)
<=> \(x^2+2x-1=0\)
\(\Delta=1^2-1.\left(-1\right)\) = 2
=> \(\orbr{\begin{cases}x_1=-1-\sqrt{2}\left(loại\right)\\x_2=-1+\sqrt{2}\left(nhận\right)\end{cases}}\)
Vậy x=\(-1+\sqrt{2}\)thì A =2
c, Thay x =\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)=2
=>A = \(\frac{4.2^2}{\left(2-1\right)^2}=16\)
Vậy A=16 thì x=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(Q=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
b.\(Q< 1\)
\(\Leftrightarrow x-\sqrt{x}-2< x-5\sqrt{x}+6\)
\(\Leftrightarrow4\sqrt{x}-8< 0\)
\(\Leftrightarrow0\le x< 4\)
Vay de Q<1 thi \(0\le0< 4\)
câu 2
\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)
câu 1
\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)
\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)
a, ĐK \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(Q=\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\)\(=\frac{x+\sqrt{x}+1}{x+1}.\frac{\left(\sqrt{x}-1\right)\left(x+1\right)}{\left(\sqrt{x}-1\right)^2}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
b. \(Q>1\Rightarrow Q-1>0\Rightarrow\frac{x+\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Rightarrow\frac{x+2}{\sqrt{x}-1}>0\)
TH1 \(\hept{\begin{cases}x+2>0\\\sqrt{x}-1>0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x>1\end{cases}\Rightarrow}x>1}\)
TH2 \(\hept{\begin{cases}x+2< 0\\\sqrt{x}-1< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\0\le x< 1\end{cases}\left(l\right)}}\)
Vậy \(x>1\)thì \(Q>1\)
Bài 1 :
- ĐK : x \(\ge2\)
- Ta có : \(\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(t.m\right)\)
Bài 2 :
a , \(a-\sqrt{a}+1=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}\). ( đk : a \(\ge0\) )
Dấu "=" xảy ra tại \(\sqrt{a}=\frac{1}{2}\Leftrightarrow a=\frac{1}{4}\left(t.m\right)\) . Vậy .........
b , \(ĐK:x\ge1\)
Ta có : \(x-2\sqrt{x-1}=\left(x-1\right)-2\sqrt{x-1}+1=\left(\sqrt{x-1}-1\right)^2\ge0\)
Dấu "=" xảy ra tại x-1=1 <=> x= 2 (t.m) . Vậy .........
<=> (\(\sqrt{X+2}\))^2=2^2
<=> |X+2| = 4
<=> X+2=4
<=> X=2
KB VS MK NHA