Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \((\frac{3}{7}-\frac{2}{3})\) .x =\(\frac{10}{21}\)
\(\frac{-5}{21}\).x=\(\frac{10}{21}\)
x= -2
Mk chỉ làm 1 phần các phằn còn lại tương tự
a: \(\Leftrightarrow\left|x-1\right|=3-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3-x+1\right)\left(2x+3+x-1\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(3x+2\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\)
=>x=-2/3
b: Trường hợp 1: x<-3
Pt sẽ là:
\(-x-1-x-3=10-4x\)
=>-2x-4=10-4x
=>2x=14
hay x=7(loại)
Trường hợp 2: -3<=x<-1
Pt sẽ là \(x+3-x-1=10-4x\)
=>10-4x=2
=>4x=8
hay x=2(loại)
Trường hợp 3: x>=-1
Pt sẽ là x+1+x+3=10-4x
=>2x+4=10-4x
=>6x=6
hay x=1(nhận)
a, (2x - 4)^2 = 36/49
=> 2x - 4 = 6/7 hoặc 2x - 4 = -6/7
=> 2x = 34/7 hoặc x = 22/7
=> x = 34/14 hoặc x = 22/14
b, tương tự a
c, |1 - x| + 0,73 = 3
=> |1 - x| = 2,23
=> 1 - x = 2,23 hoặc 1 - x = -2,23
=> x = -1,23 hoặc x = 3,23
d, tương tự c
a) \(\left(2x-4\right)^2=\frac{36}{49}=\frac{6^2}{7^2}=\left(\frac{6}{7}\right)^2\)
\(\Rightarrow2x-4=\frac{6}{7}\Rightarrow2x=\frac{34}{7}\Rightarrow x=\frac{17}{7}\)
b) \(\left(3x-5\right)^2=\frac{36}{25}=\frac{6^2}{5^2}=\left(\frac{6}{5}\right)^2\)
\(\Rightarrow3x-5=\frac{6}{5}\Rightarrow3x=\frac{31}{5}\Rightarrow x=\frac{31}{15}\)
c)\(\left|1-x\right|+0,73=3\Rightarrow\left|1-x\right|=2,27\)
\(\orbr{\begin{cases}TH1.1-x=2,27\Rightarrow x=-1,27\\TH2.1-x=-2,27\Rightarrow x=3,27\end{cases}}\)
Vậy, x=......
d) \(\left|x+\frac{3}{4}\right|-5=-2\Rightarrow\left|x+\frac{3}{4}\right|=3\)
\(\orbr{\begin{cases}TH1.x+\frac{3}{4}=3\Rightarrow x=\frac{9}{4}\\TH2.x+\frac{3}{4}=-3\Rightarrow x=-3,75\end{cases}}\)
Vậy, x=.......
HOK TỐT
a) \(2^x+2^{x+5}=144\)
\(\Rightarrow2^x+2^x\cdot2^5=144\)
\(\Rightarrow2^x+2^x\cdot32=144\)
\(\Rightarrow2^x\left(1+32\right)=144\)
\(\Rightarrow2^x\cdot33=144\)
\(\Rightarrow2^x=144:33\)
\(\Rightarrow2^x=\frac{48}{11}\)
\(\Rightarrow x\in\varnothing\)
Vậy không tìm được x thỏa mãn đề bài
b) \(|x+1|+|x+3|+|x+5|=7x\)
Ta có: \(\hept{\begin{cases}|x+1|\ge0\forall x\\|x+3|\ge0\forall x\\|x+5|\ge0\forall x\end{cases}\Rightarrow|x+1|+|x+3|+|x+5|\ge0\forall x\Rightarrow7x\ge0\forall x}\)
\(\Rightarrow|x+1|+|x+3|+|x+5|=x+1+x+3+x+5=7x\)
\(\Rightarrow\left(x+x+x\right)+\left(1+3+5\right)=7x\)
\(\Rightarrow3x+9=7x\)
\(\Rightarrow7x-3x=9\)
\(\Rightarrow4x=9\)
\(\Rightarrow x=\frac{4}{9}\)
Vậy x=\(\frac{4}{9}\)
\(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x^{\left(1\right)}\)
Ta có \(\left|x+1\right|\ge0;\left|x+3\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow7x\ge0\Rightarrow x\ge0\)
Từ (1)\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x\)
\(3x+9=7x\)
\(3x-7x=-9\)
\(-4x=-9\)
\(x=\frac{9}{4}\)
x^2 = 5/7 *x
x*x = 5/7 *x
x* x :x = 5/7
x= 5/7
\(x^2=\frac{5}{7}x\)
\(=>x=\frac{5}{7}\)
Vậy pt trên có nghiệm là \(\frac{5}{7}\)