K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

a,A=|x-7|+12

  Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)

  Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7

  Vậy GTNN của A là 12 khi x = 7

b,B=|x+12|+|y-1|+4

   Vì \(\left|x+12\right|\ge0\forall x\)

        \(\left|y-1\right|\ge0\forall y\)

   nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)

      \(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)

Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)

Vậy GTNN của B là 4 khi x = -12 và y = 1

8 tháng 1 2019

cậu có thể làm những ý khác ko

24 tháng 12 2022

(x+1)+(x+3)+...+(x+99)=0

Tổng các số hạng là: (99+1):2=50 (số hạng)

=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0

<=> 50.x+\frac{\left(99+1\right).50}{2}2(99+1).50=0 <=> 50.x+2500=0 => x=-2500/50=-50

x là 7,y là 11 , z là 13

3 tháng 3 2020

x = 7; y = 11; t = 13

6 tháng 3 2020

Ta thấy : \(\left(x-y^2+z\right)^2\ge0\forall x,y,z\)

\(\left(y-2\right)^2\ge0\forall y\)

\(\left(z+3\right)^2\ge0\forall z\)

Do đó : \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\forall x,y,z\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2^2+\left(-3\right)=0\\y=2\\z=-3\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)

Vậy : \(\left(x,y,z\right)=\left(7,2,-3\right)\)

6 tháng 3 2020

CẢM ƠN BN ĐẠT NHIỀU!!!!!!

29 tháng 1 2017

b2

P=4a^2 + 4a =4(a^2 + a)=4.[a.a + a]=4[a.(a+1)]

Mà a và a+1 là 2 số nguyên liên tiếp nên tích 2 số này chia hết cho 2

Đặt a(a+1)=2.k ( k thuộc Z)

Suy ra: P=4.2k=8k chia hết cho 8

k ch mình nha