Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3n+1⋮11-2n\)
\(\Rightarrow2.\left(3n+1\right)⋮11-2n\)
\(\Rightarrow6n+2⋮11-2n\)
\(\Rightarrow35-33+6n⋮11-2n\)
\(\Rightarrow35-3.\left(11-2n\right)⋮11-2n\)
Vì \(3.\left(11-2n\right)⋮11-2n\Rightarrow35⋮11-2n\)
Mà \(n\in N\) nên \(11-2n\in N\) và \(11-2n\le11\)
\(\Rightarrow11-2n\in\left\{1;-1;5;-5;7;-7;-35\right\}\)
\(\Rightarrow2n\in\left\{10;12;6;16;4;18;46\right\}\)
\(\Rightarrow n\in\left\{5;6;3;8;2;9;23\right\}\)
Vậy \(n\in\left\{5;6;3;8;2;9;23\right\}\)
35 - 33 + 6n = 2 + 6n = 6n + 2
đưa về 35 - 33 + 6n để bên trái có dạng là hiệu hoặc tổng của 1 số nguyên và bội của 11 - 2n trong trường hợp này là hiệu
a Để N la so nguyen suy ra : 4n -5chia het 2n-1 2(2n-1)-3chia het 2n- 1 suy ra 2n-1 thuoc Ước của 3
a. (4n-5)/(2n-1)=2 dư -3 vậy 2n-1 phải \(\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
xét 2n-1=1 n=1
2n-1=-1 n=0
2n-1=3 n=2
2n-1=-3 n=-1
vậy n=\(\left\{-1;0;1;2\right\}\)
b. n+2017= n+1+2016 mà 2016 chia hết cho 9 nên suy ra n+1 phải chia hết cho 9 thuộc ước của 9 (phần còn lại tự thử vào nha như câu a ý mình lười lắm)
c.vì n>3 nên n/3 dư 1 hoăc 2 ta co n= 3k+1 hoặc n= 3k+2
xét n= 3k+1 thì n^2+2018= (3k+1)^2+2018= 9k^2+1+2018=9k^2+2019=3(3k^2+673) chia hết cho 3 là hợp số
xét n=3k+2 thì n^2+2018=(3k+2)^2+2018=9k^2+4+2018=9k^2+2022=3(3k^2+674) chia hết cho 3 là hợp số
vậy n^2+2018 là hợp số
c/ n-6chia hết cho n+1
suy ra ( n+1)-7 chia hết cho n+1
mà n+1 chia hết cho n+1 suy ra 7 chia hết cho n+1
suy ra n+1 thuộc Ư(7)={1;-1;7;-7}
+/ Nếu n+1=1 suy ra n=1-1=0
+/Nếu n+1=-1 suy ra n=-1-1=-2
+/Nếu n+1=7 suy ra n=7-1=6
+/Nếu n+1=-7 suy ra -7-1=-8
Vậy x thuộc {0;-2;6;-8}
a/ \(7⋮\left(n-2\right)\)
=> \(n-2\inƯ\left(7\right)\)
<=> \(n-2\in\left\{-7;-1;1;7\right\}\)
+) \(n-2=-7\)
\(\Rightarrow n=-5\)
+) \(n-2=-1\)
\(\Rightarrow n=1\)
+) \(n-2=1\)
\(\Rightarrow n=3\)
+) \(n-2=7\)
\(\Rightarrow n=9\)
Vậy \(n\in\left\{-5;1;3;9\right\}\)
a.Vì 5^n-1 chia hết cho 2 với n thuộc N(sao) => 5^n-1 chia hết cho 2 với n thuộc N(sao).
b.VÌ 97^5-101^100 chia hết cho 5 =>b.97^5-101^100 chia hết cho 5
\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)
Vậy \(\left(3n\right)^{100}⋮81\)
Chúc em học tốt!
Gọi \(3\) số tự nhiên liên tiếp là : \(a\)\(;\) \(a+1\)\(;\) \(a+2\) \(\left(a\in N\right)\)
Khi chia \(a\) cho \(3\) ta có các trường hợp :
\(TH1:\) \(a=3k\left(k\in N\right)\Rightarrow a⋮3\) \(\rightarrowđpcm\)
\(TH2:\) \(a=3k+1\left(k\in N\right)\Rightarrow a+2=3k+3⋮3\) \(\rightarrowđpcm\)
\(TH2:a=3k+2\left(k\in N\right)\Rightarrow a+1=3k+3⋮3\) \(\rightarrowđpcm\)
Vậy trong \(3\) số tự nhiên liên tiếp luôn có \(1\) số chia hết cho \(3\)
\(\rightarrowđpcm\)
~ Chúc bn học tốt ~
Gọi 3 số tự nhiên liên tiếp lần lượt là a, a+1, a+2 (a \(\in\) N )
Xét 3 trường hợp :
+ a = 3k ( k \(\in\) N )
=> a \(⋮\) 3
+ a = 3k + 1
=> a+2 = 3k + 1 + 2
= 3k + ( 1 + 2 )
= 3k + 3
= 3(k+1) chia hết cho 3
=> (a+2) \(⋮\) 3
+ a = 3k + 2
=> a+1 = 3k + 2 + 1
= 3k + ( 2 + 1 )
= 3k + 3
= 3(k+1) chia hết cho 3
=> (a+1) \(⋮\) 3
Vậy trong ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
\(M=1+3+3^2+...........+3^{118}+3^{119}\)
\(\Leftrightarrow M=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+..........+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(\Leftrightarrow M=40+3^4\left(1+3+3^2+3^3\right)+..........+3^{116}\left(1+3+3^2+3^3\right)\)
\(\Leftrightarrow M=40+3^4.40+...........+3^{116}.40\)
\(\Leftrightarrow M=40\left(1+3^4+.........+3^{116}\right)⋮5\)
\(\Leftrightarrow M⋮5\)
Định làm nhưng nhiều như này, nản qá nên thôi!
Làm 1 câu mấy câu kia tương tự nha!
a, \(3n-7\) chia hết cho \(n+5\)
Ta có:
\(\dfrac{3n-7}{n+5}=\dfrac{3n+15-22}{n+5}=3-\dfrac{22}{n+5}\)
Để \(3n-7\) chia hết cho \(n+5\) thì \(22\) phải chia hết cho \(n+5\).
\(\Rightarrow n+5\inƯ\left(22\right)\)
\(\Rightarrow n+5\in\left\{1;2;11;22\right\}\)
mà \(n\in N\Rightarrow n+5\ge5\)
\(\Rightarrow n+5\in\left\{11;22\right\}\)
\(\Rightarrow n\in\left\{6;17\right\}\)
Vậy...........
Chúc bạn học tốt!!!