\(A=-x^2+6x+2\)

\(B=-x^2-4x\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

\(A=-x^2+6x+2=-\left(x-3\right)^2+11\le11\)

Vậy Max  \(A=11\)khi  \(x=3\)

\(B=-x^2-4x=-\left(x+2\right)^2+4\le4\)

Vậy Max \(B=4\)khi  \(x=-2\)

\(C=-2x^2+6x+3=-2\left(x-\frac{3}{2}\right)^2+\frac{15}{2}\le\frac{15}{2}\)

Vậy Max \(C=\frac{15}{2}\)khi  \(x=\frac{3}{2}\)

Giang sai rồi nhá , nó ko chỉ có max đâu , nó có cả Min nữa đấy

15 tháng 4 2018

a)

\(A=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(A-2=-\dfrac{3}{x^2-8x+22}=-\dfrac{3}{\left(x-4\right)^2+6}\ge-\dfrac{3}{6}=-\dfrac{1}{2}\)

\(A\ge\dfrac{3}{2}\) khi x =4

7 tháng 10 2020

a) \(A=x^2+6x+1=\left(x^2+2\cdot x\cdot3+3^2\right)-8\)

\(=\left(x+3\right)^2-8\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> \(\left(x+3\right)^2-8\ge-8\forall x\)

Dấu " = " xảy ra khi và chỉ khi (x + 3)2 = 0 => x = -3

Vậy Amin = -8 khi x = -3

b) \(2x^2+10x-5=2\left(x^2+5x-\frac{5}{2}\right)\)

\(=2\left[x^2+2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\frac{35}{2}\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{35}{2}\)

Vì (x + 5/2)2 \(\ge0\forall x\)

=> \(2\left(x+\frac{5}{2}\right)^2-\frac{35}{2}\ge-\frac{35}{2}\forall x\)

Dấu " = " xảy ra khi và chỉ khi (x + 5/2)2 = 0 => x = -5/2

Vậy Bmin = -35/2 khi x = -5/2

c) \(x^2-5x=\left[x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]-\frac{25}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\)

Vì (x - 5/2)2 \(\ge\)0 với mọi x

=> \(\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)

Dấu " = " xảy ra khi và chỉ khi (x - 5/2)2 = 0 => x = 5/2

Vậy Cmin = -25/4 khi x = 5/2

4 tháng 5 2017

mình 2k4 ko bt làm

6 tháng 5 2017

 a)    \(B=\frac{3x^2+6x+10}{x^2+2x+5}\)

\(\Leftrightarrow B=3-\frac{5}{x^2+2x+5}\)

\(\Leftrightarrow B=3-\frac{5}{5\left(\frac{x^2}{5}+\frac{2x}{5}+\frac{5}{5}\right)}\Leftrightarrow B=3-\frac{1}{\frac{\left(x^2+2x+1\right)}{5}+\frac{4}{5}}\)( cho \(\left(x+1\right)^2=0\))

\(\Leftrightarrow maxB=3-\frac{1}{\frac{4}{5}}=\frac{7}{4}\)   KHI X= -1

c)  \(D=x^2-2x+y^2+4y+7\)

\(\Leftrightarrow D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2\)

\(\Leftrightarrow D=\left(x-1\right)^2+\left(y+2\right)^2+2\)

\(\Leftrightarrow minD=2\)KHI X= 1 và Y= -2

e) Câu này đề có vẻ sai bạn kiểm tra lại giúp mk ! mk làm theo đề đúng nka !

         \(E=\frac{x^2-4x+1}{x^2}\)

\(\Leftrightarrow E=\frac{x^2\left(1-\frac{4}{x}+\frac{1}{x^2}\right)}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)

ĐẶT    \(y=\frac{1}{x}\)\(\Leftrightarrow minE=-3\)KHI X = 1/2

Hai câu còn lại tối mk giải tiếp mk bận đi học rùi bạn thông cảm 

7 tháng 10 2018

a) \(A=5x^2-6x-1\)

   \(\Rightarrow A=5\left(x^2-\frac{6}{5}x-\frac{1}{5}\right)\)

  \(\Rightarrow A=5\left(x^2-2\cdot x\cdot\frac{6}{10}+\frac{36}{100}-\frac{14}{25}\right)\)

  \(\Rightarrow A=5\left[\left(x-\frac{6}{10}\right)^2-\frac{14}{25}\right]\)

  \(\Rightarrow A=5\left(x-\frac{6}{10}\right)^2-\frac{14}{5}\)

  Vì \(\left(x-\frac{6}{10}\right)^2\ge0\forall x\)\(\Rightarrow A=5\left(x-\frac{6}{10}\right)^2-\frac{14}{5}\ge-\frac{14}{5}\forall x\)

\(A=-\frac{14}{5}\Leftrightarrow\left(x-\frac{6}{10}\right)^2=0\Leftrightarrow x=\frac{6}{10}\)

Vậy \(MinA=-\frac{14}{5}\Leftrightarrow x=\frac{6}{10}\)

   

7 tháng 10 2018

\(x^2+y^2+2xy+4x+4y\)

\(=\left(x+y\right)^2+4\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+4\right)\)

22 tháng 9 2018

bài 1, a, \(x^2-6x+15=\left(x-3\right)^2+6\)

b,\(9x^2+6x+5=\left(3x+1\right)^2+4\)

bài 2:

a,\(-\left(x^2-4x+4\right)+4+5=-\left(x-2\right)^2+9\)

b,\(-\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{4}+2=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)bài 3:a, =x.(x+5)

b,=x.(1+y)

c,=\(\left(x-2\right)^2\)

d,=a.(a-b)-c.(a-b)=(a-b).(a-c)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Bài 1:
a)

Ta có: \(x^2-6x+15=x^2-2.3x+3^2+6=(x-3)^2+6\)

\((x-3)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow x^2-6x+15\geq 0+6=6\)

Vậy GTNN của biểu thức là $6$ khi $x=3$

b)

\(9x^2+6x+5=(3x)^2+2.3x.1+1^2+4\)

\(=(3x+1)^2+4\)

\((3x+1)^2\geq 0, \forall x\Rightarrow 9x^2+6x+5\geq 0+4=4\)

Vậy GTNN của biểu thức là $4$ khi \(x=-\frac{1}{3}\)

8 tháng 7 2016

mọi người giúp mình với

9 tháng 9 2017

Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\) 

Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)

Vậy \(P_{min}=-7\) khi x = 2

1 tháng 5 2019

\(A=x-x^2\)

\(A=-\left(x^2-x\right)\)

\(A=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)

\(A=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(A=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

Còn lại tương tự

6 tháng 5 2019

làm hộ câu c)

14 tháng 12 2018

a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

14 tháng 12 2018

thanks