K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

\(A=-x^2+6x+2=-\left(x-3\right)^2+11\le11\)

Vậy Max  \(A=11\)khi  \(x=3\)

\(B=-x^2-4x=-\left(x+2\right)^2+4\le4\)

Vậy Max \(B=4\)khi  \(x=-2\)

\(C=-2x^2+6x+3=-2\left(x-\frac{3}{2}\right)^2+\frac{15}{2}\le\frac{15}{2}\)

Vậy Max \(C=\frac{15}{2}\)khi  \(x=\frac{3}{2}\)

Giang sai rồi nhá , nó ko chỉ có max đâu , nó có cả Min nữa đấy

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

9 tháng 7 2023

Bài 1 :

\(A=-x^2+6x+14\)

\(A=-x^2+6x-9+23\)

\(A=-\left(x^2-6x+9\right)+23\)

\(A=-\left(x-3\right)^2+23\)

Vì \(-\left(x-3\right)^2\le0\)

\(\Rightarrow A=-\left(x-3\right)^2+23\le23\)

\(\Rightarrow Max\left(A\right)=23\)

Bài 2 :

\(B=4x^2+12x+30\)

\(\Rightarrow B=4x^2+12x+9+21\)

\(\Rightarrow B=\left(2x+3\right)^2+21\)

Vì \(\left(2x+3\right)^2\ge0\)

\(\Rightarrow B=\left(2x+3\right)^2+21\ge21\)

\(\Rightarrow Min\left(B\right)=21\)

29 tháng 10 2017

B=(x^2-6x+9)-8

B=(x-3)^2-8

Vì (x-3)^2\(\ge0\forall x\)

-> (x-3)-8\(\ge-8\forall x\)

Dấu = xảy ra<=> x-3=0<=>x=3

C=2x^2-10x+1

C=2(x^2-5x+6,25)-11,5

C= 2(x-2,5)^2-11,5

Vì 2(x-2,5)^2\(\ge0\forall x\)

->2(x-2,5)^2-11,5\(\ge-11,5\forall x\)

Dấu = xẩy ra<=> x-2,5=0<=>x=2,5

Vậy Min C là -11,5 <=> x=2,5

D= x^2+10-25

D=(x^2+10+25)-50

D=(x+5)^2-50

Vì (x-5)^2 \(\ge0\forall x\)

-> (x-5)^2-50\(\ge-50\forall x\)

Dấu = xẩy ra <=> x-5=0<=>x=5

Vậy Min D là -50 <=>x=5

29 tháng 10 2017

Tìm Max

B= 5x-x^2

B=-(x^2-5x+25/4)-25/4

B= -(x-5/2)^2-25/4

Vì -(x-5/2)^2\(\le0\forall x\)

-> -(x-5/2)^2-25/4\(\le\)-25/4

Dấu = xẩy ra <=> x-5/2=0<=>x=5/2

Vậy Max B là -25/4 <=> x=5/2

C=-x^2-6x+10

C=-(x^2+6x+9)+19

C= -(x+3)^2+19

Vì -(x+3)^2\(\le\)0

=> -(x+3)^2+19\(\le\)19

Dấu = xảy ra <=> x+3=0<=>x=-3

D= -2x^x+8x+12

D=-2(x^2-4x+4)+20

D=-2(x-2)^2 +20

 Vì -2(x-2)^2\(\le\)0

=> -2(x-2)^2+20\(\le\)20

Dấu= xẩy ra<=> x-2=0<=>x=2

Vậy Max D là 20<=>x-2

15 tháng 4 2018

a)

\(A=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(A-2=-\dfrac{3}{x^2-8x+22}=-\dfrac{3}{\left(x-4\right)^2+6}\ge-\dfrac{3}{6}=-\dfrac{1}{2}\)

\(A\ge\dfrac{3}{2}\) khi x =4