K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

1) +) ta có : \(A=2x^2+9y^2-6xy-6x-12y+2018\)

\(=x^2+9y^2+4-6xy+4x-12y+x^2-10x+25+1989\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1989\ge1989\)

\(\Rightarrow A_{min}=1989\) khi \(x=5;y=\dfrac{7}{3}\)

câu này mk sửa đề chút nha

+) ta có : \(B=-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)+5\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)

\(\Rightarrow B_{max}=5\) khi \(y=2;x=3\)

2) a) ta có : \(x^2+y^2=5=\left(x+y\right)^2-2xy=5\Leftrightarrow9-2xy=5\)

\(\Leftrightarrow xy=2\)

ta có : \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=9\)

b) ta có : \(x^2+y^2=15=\left(x-y\right)^2+2xy=15\Leftrightarrow25+2xy=15\)

\(\Leftrightarrow xy=-5\)

ta có : \(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=5^3+3\left(-5\right).5=50\)

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)

30 tháng 10 2019

Câu 1 : Tìm x :

1. \(A=x^2+4x-2\)

\(A=x^2+2.x.2+2^2-2^2-2\)

\(A=\left(x^2+4x+2^2\right)-4-2\)

\(A=\left(x+2\right)^2-6\)

\(\left(x+2\right)^2-6\ge-6\)

MIn A= -6 khi \(\left(x+2\right)^2=0\)

=> \(x+2=0hayx=-2\)

Vậy x=2

những câu tiếp theo làm tg tự như thế nhé

30 tháng 10 2019

Câu 1:

a) Ta có: \(A=x^2+4x-2\)

\(=x^2+4x+4-6\)

\(=\left(x+2\right)^2-6\)

Ta có: \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2-6\ge-6\forall x\)

Dấu '=' xảy ra khi

\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy: x=-2

b) Ta có: \(B=2x^2-4x+3\)

\(=2\left(x^2-2x+\frac{3}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot1+1+\frac{1}{2}\right)\)

\(=2\left[\left(x^2-2x\cdot1+1\right)+\frac{1}{2}\right]\)

\(=2\left[\left(x-1\right)^2+\frac{1}{2}\right]\)

\(=2\left(x-1\right)^2+1\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi

\(2\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: x=1

c) Ta có: \(C=x^2+y^2-4x+2y+5\)

\(=x^2-4x+4+y^2+2y+1\)

\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)\)

\(=\left(x-2\right)^2+\left(y+1\right)^2\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\left(y+1\right)^2\ge0\forall y\)

Do đó: \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy: x=2 và y=-1

Câu 2:

a) Ta có: \(A=-x^2+6x+5\)

\(=-\left(x^2-6x-5\right)\)

\(=-\left(x^2-6x+9-14\right)\)

\(=-\left[\left(x^2-6x+9\right)-14\right]\)

\(=-\left[\left(x-3\right)^2-14\right]\)

\(=-\left(x-3\right)^2+14\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2+14\le14\forall x\)

Dấu '=' xảy ra khi

\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: GTLN của đa thức \(A=-x^2+6x+5\) là 14 khi x=3

b) Ta có: \(B=-4x^2-9y^2-4x+6y+3\)

\(=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(4x^2+4x+1\right)+\left(9y^2-6y+1\right)-5\right]\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2-5\right]\)

\(=-\left(2x+1\right)^2-\left(3y-1\right)^2+5\)

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(2x+1\right)^2\le0\forall x\)(1)

Ta có: \(\left(3y-1\right)^2\ge0\forall y\)

\(\Rightarrow-\left(3y-1\right)^2\le0\forall y\)(2)

Từ (1) và (2) suy ra

\(-\left(2x+1\right)^2-\left(3y-1\right)^2\le0\forall x,y\)

\(\Rightarrow-\left(2x+1\right)^2-\left(3y-1\right)^2+5\le5\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}-\left(2x+1\right)^2=0\\-\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)

Vậy: GTLN của đa thức \(B=-4x^2-9y^2-4x+6y+3\) là 5 khi và chỉ khi \(x=\frac{-1}{2}\)\(y=\frac{1}{3}\)

Câu 3:

a) Ta có: \(x^2+y^2-2x+4y+5=0\)

\(\Rightarrow x^2-2x+1+y^2+4y+4=0\)

\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy: x=1 và y=-2

b) Ta có: \(5x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow x^2+4x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow\left(4x^2+12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Rightarrow\left(2x+3y\right)^2+\left(x-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+3y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot3+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)

Vậy: x=3 và y=-2

8 tháng 3 2019

xuống lớp 1 học bạn ơi

13 tháng 8 2019

Bn nên ra từng bài ra vậy ai làm cho . hum

9 tháng 12 2017

a) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)

\(=\left(2x-y\right)\left(2x-y\right)^2\)

\(=\left(2x-y\right)^3\)

b) \(\left(6x^5y^2-9x^4y^3+15x^3y^4\right):3x^3y^2\)

\(=2x^2-3xy+5y^2\)

những câu khác tương tự

9 tháng 8 2017

Bài 8: Cho a+b= 1 nha ( mk thiếu đề)

9 tháng 8 2017

Bài 1:

Theo bài ra ta có:

\(\left(x-y\right)^2=x^2-2xy+y^2\)

\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)

\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)

\(=25-10y+y^2+25-10x+x^2-4\)

\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)

\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)

\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)

\(=50-50+5^2-4-4\)

\(=25-8=17\)

Vậy giá trị của \(\left(x-y\right)^2\)là 17