Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow2A=2^2+2^3+...+2^{121}\)
\(\Leftrightarrow2A-A=\left(2^2+2^3+...+2^{121}\right)-\left(2+2^2+...+2^{120}\right)\)
\(\Rightarrow A=2^{121}-2\)
b) Mk làm mẫu 1 phần thôi nhé bn:
\(A=2+2^2+...+2^{120}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{119}\right)\) chia hết cho 3
Tương tự xét chia hết cho 7 thì nhóm 3 số, cho 15 thì 4 số nhé
a, A=2^2009=2^2008 * 2=(2^4)^502 * 2=(...6)*(...2)=(...2)
b,c,d,e.. tuong tu
a) \(A=2^{2009}=2^{4.502}.2=\left(....6\right).2=\left(....2\right)\)
mk cho công thức thôi nhé, còn lại b tự làm nốt nhé.
\(2^{4n}=\left(....6\right)\)
\(3^{4n}=\left(...1\right)\)
\(7^{4n}=\left(...1\right)\)
\(5^n;\left(...0\right)^n;\left(...1\right)^n\) luôn có tận cùng lần lượt là 5;0;1
\(4^{2n}=\left(...6\right)\)
mk chỉ nhớ vậy thôi
a)22009 = 24x502 + 1
=24k + 1
=x6 + 1
=x7
Vậy 22009 có tận cùng là 7
b)32009 = 34x502 + 1
= 34k +1
=x1 + 1
= x2
Vậy 32009 có tận cùng là 2
c)72011= 74x502 + 3
=74k + 3
=x1 + 3
=x4
Vậy 72011 có tận cùng là 4
CHÚC BẠN HỌC GIỎI
baif4 :
a, chữ số tận cùng của 2^999 là 88
b, là 76
1, Ta có 2009^2008 = (2009^2)^1004 = (.....1)^1004 = .....1
Vậy chũa số tận cùng của 2009^2008 là chữ số 1