K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

Bài 2 .

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) Sai đề hay sao ý

c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)

\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)

\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)

d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

.....

\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1-x^{32}}\)

15 tháng 11 2017

2)

a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)

\(=\dfrac{6x}{xy}\)

\(=\dfrac{6}{y}\)

b) \(\dfrac{2x^2}{y}.3xy^2\)

\(=\dfrac{2x^2.3xy^2}{y}\)

\(=\dfrac{6x^3y^2}{y}\)

\(=6x^3y\)

c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)

\(=\dfrac{15x.2y^2}{7y^3.x^2}\)

\(=\dfrac{30xy^2}{7x^2y^3}\)

\(=\dfrac{30}{7xy}\)

d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)

\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)

\(=\dfrac{2y}{5x\left(x-y\right)}\)

21 tháng 10 2022

a: \(=\dfrac{6x+12+4-2x}{30}=\dfrac{4x+16}{30}=\dfrac{2x+8}{15}\)

b: \(=\dfrac{18x}{60}+\dfrac{8x-4}{60}+\dfrac{6-3x}{60}\)

\(=\dfrac{18x+8x-4+6-3x}{60}=\dfrac{23x+2}{60}\)

c: \(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\dfrac{2x-2}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)

d: \(=\dfrac{x}{y\left(x-y\right)}+\dfrac{2x-y}{x\left(y-x\right)}\)

\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}=\dfrac{x-y}{xy}\)

e: \(=\dfrac{x^2+2xy+y^2+x^2+y^2}{x+y}=\dfrac{2x^2+2xy+2y^2}{x+y}\)

20 tháng 8 2017

a)\(\dfrac{2x^2-10xy}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)

\(=\dfrac{2x\left(x-5y\right)}{2xy}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)

\(=\dfrac{x-5y}{y}+\dfrac{5y-x}{y}+\dfrac{x+2y}{x}\)

\(=\dfrac{x\left(x-5y\right)+x\left(5y-x\right)+y\left(x+2y\right)}{xy}\)

\(=\dfrac{x^2-5xy+5xy-x^2+xy+2y^2}{xy}\)

\(=\dfrac{y\left(x+2y\right)}{xy}\)

24 tháng 11 2017

b) \(\dfrac{x+1}{2x-2}+\dfrac{x^2+3}{2-2x^2}\)

\(=\dfrac{x+1}{2x-2}-\dfrac{x^2+3}{2x^2-2}\)

\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x^2-1\right)}\)

\(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\) MTC: \(2\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+1\right)-\left(x^2+3\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)

e) \(\dfrac{2x^2-xy}{x-y}+\dfrac{xy+y^2}{y-x}+\dfrac{2y^2-x^2}{x-y}\)

\(=\dfrac{2x^2-xy}{x-y}-\dfrac{xy+y^2}{x-y}+\dfrac{2y^2-x^2}{x-y}\)

\(=\dfrac{\left(2x^2-xy\right)-\left(xy+y^2\right)+\left(2y^2-x^2\right)}{x-y}\)

\(=\dfrac{2x^2-xy-xy-y^2+2y^2-x^2}{x-y}\)

\(=\dfrac{x^2-2xy+y^2}{x-y}\)

\(=\dfrac{\left(x-y\right)^2}{x-y}\)

\(=x-y\)

27 tháng 11 2017

1) \(\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}-\dfrac{1}{1-x}+1\)

\(=\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}+\dfrac{1}{x-1}+1\)

\(=\dfrac{x^2}{x+1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{1}{x-1}+1\) MTC: \(\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{x^2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2\left(x-1\right)+2x+\left(x+1\right)+\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^3-x^2+2x+x+1+x^2-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x^2+3\right)}{\left(x-1\right)\left(x+1\right)}\)

b) \(\dfrac{1}{x^3-x}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{x^2-1}\)

\(=\dfrac{1}{x\left(x^2-1\right)}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x\left(x-1\right)\left(x+1\right)}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\) MTC: \(x\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{1}{x\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{x\left(x-1\right)\left(x+1\right)}+\dfrac{2x}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1-\left(x+1\right)+2x}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1-x-1+2x}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

a: \(=\dfrac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{6a^2+6a+1}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{4a^2-3a+5+2a^2-3a+1-6a^2-6a-6}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{-12a}{\left(a-1\right)\left(a^2+a+1\right)}\)

b: \(=\dfrac{5}{a+1}+\dfrac{10}{a^2-a+1}-\dfrac{15}{\left(a+1\right)\left(a^2-a+1\right)}\)

\(=\dfrac{5a^2-5a+5+10a+10-15}{\left(a+1\right)\left(a^2-a+1\right)}\)

\(=\dfrac{5a^2+5a}{\left(a+1\right)\left(a^2-a+1\right)}=\dfrac{5a}{a^2-a+1}\)

 

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

28 tháng 6 2017

Phép trừ các phân thức đại số

1 tháng 12 2017

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\) MTC: \(xy\left(x-2y\right)\left(x+2y\right)\)

\(=\dfrac{2x.y\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\dfrac{y.x\left(x+2y\right)}{xy\left(x-2y\right)\left(x+2y\right)}+\dfrac{4.xy}{xy\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y-2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\) MTC: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{\left(x^2+xy+y^2\right)-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

4 tháng 12 2018

Sao ảnh đại diện của bạn giống mình thế?