Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2x^2-2xt-5x+5y\)
\(=\left(2x^2-5x\right)-\left(2xy-5y\right)\)
\(=x\left(2x-5\right)-y\left(2x-5\right)\)
\(=\left(2x-5\right)\left(x-y\right)\)
\(b,8x^2+4xy-2ax-ay\)
\(=\left(8x^2-2ax\right)+\left(4xy-ay\right)\)
\(=2x\left(4x-a\right)+y\left(4x-a\right)\)
\(=\left(4x-a\right)\left(2x+y\right)\)
\(c,x^3-4x^2+4x\)
\(=x^3-2x^2-2x^2+4x\)
\(=\left(x^3-2x^2\right)-\left(2x^2-4x\right)\)
\(=x^2\left(x-2\right)-2x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x-2\right)\)
\(=x\left(x-2\right)^2\)
\(d,2xy-x^2-y^2+16\)
\(=-\left(x^2-2xy+y^2-16\right)\)
\(=-\left[\left(x-y\right)^2-4^2\right]\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
\(e,x^2-y^2-2yz-z^2\)
\(=x^2-\left(y^2+2yz+z^2\right)\)
\(=x^2-\left(y+z\right)^2=\left(x-y-z\right)\left(x+y+z\right)\)
a)\(37,5\times8,5+-7,5\times3,4-6,6\times7,5+1,5\times37,5\)
\(=\left(37,5\times8,5+1,5\times37,5\right)-\left(7,5\times3,4+6,6\times7,5\right)\)
\(=37,5\left(8,5+1,5\right)-7,5\left(3,4+6,6\right)\)
\(=375-75\)
\(=300\)
a) \(2x^2-2xy-5x+5y\)
\(=y\left(5-2x\right)-x\left(5-2x\right)\)
\(=\left(5-2x\right)\left(y-x\right).\)
b) \(8x^2+4xy-2ax-ay\)
\(=2x\left(4x-a\right)+y\left(4x-a\right)\)
\(=\left(2x+y\right)\left(4x-a\right)\)
c) \(x^3-4x^2+4x\)
\(=x\left(x^2-4x+4\right)\)
\(=x\left(x-2\right)^2\)
d) \(2xy-x^2-y^2+16\)
\(=-\left(x^2-2xy+y^2-4^2\right)\)
\(=-\left[\left(x-y\right)^2-4^2\right]\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
e) \(x^2-y^2-2yz-z^2\)
\(=x^2-\left(y^2+2yz+z^2\right)\)
\(=x^2-\left(y+z\right)^2\)
\(=\left(x-y+z\right)\left(x+y+z\right)\)
g) \(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4c^2\right)\)
\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)
\(=3\left(a-b-2c\right)\left(a-b+2c\right)\)
a ) \(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4c^2\right)\)
\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)
\(=4\left(a-b-2c\right)\left(a-b+2c\right)\)
b ) \(x^2-25+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
c )
\(x^2y-x^3-9y+9x\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(y-x\right)\left(x^2-9\right)\)
\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
d )\(x^2\left(x-1\right)+16\left(1-x\right)\)
\(=x^2\left(x-1\right)-16\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-16\right)\)
\(=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
a) 8x2 + 4xy - 2ax - ay = (8x2 + 4xy) - (2ax + ay) = 4x(2x + y) - a(2x + y) = (4x - a)(2x + y)
b) 2xy - x2 - y2 = 16 - (-2xy + x2 + y2) = 42 - (x - y)2 = (4 - x + y)(4 + x - y)
c) x2 - y2 - 2yz - z2 = x2 - (y2 + 2yz + z2) = z2 - (y + z)2 = (z - y - z)(z + y + z)
a)\(81x^2-6yz-9y^2-z^2\)
\(=81x^2-\left(z-3y\right)^2\)
\(=\left(9x-z+3y\right)\left(9x+z-3y\right)\)
b)\(x^2y-x^3-9y+9x\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
c)\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4z^2\right)\)
\(=3\left[\left(a-b\right)^2-4z^2\right]\)
\(=3\left(a-b-2z\right)\left(a-b+2z\right)\)
a)\(81x^2-6yz-9y^2-z^2=\left(9x\right)^2-\left(9y^2+6yz+z^2\right)=\left(9x\right)^2-\left(3y+z\right)^2=\left(9x-3y-z\right)\left(9x+3y+z\right)\)b)\(x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x^2-9\right)\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)
c)\(3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
Bài làm:
a) x2 - y2 - 2x + 2y = (x - y)(x + y) - (2x - 2y)
= (x - y)(x + y) - 2(x - y)
= [(x + y) - 2].(x - y)
= (x + y - 2)(x - y)
c)3a2 - 6ab + 3b2 - 12c2 = (3a2 - 6ab + 3b2) - 12c2
= 3(a2 - 2ab + b2) - 12c2
= 3[(a - b)2] - 12c2
= 3[(a - b)2 - 4c2]
= 3[(a - b)2 - (2c)2]
= 3[(a - b - c) - (a - b + c)]
= 3(a - b - c - a + b - c)
= 3(-2c)
= -6c
d)x2 - 5 + y2 + 2xy = (x2 + 2xy + y2) - 5
= (x + y)2 - 5
= (x + y)2 -(\(\sqrt{5}\))2
= (x + y - \(\sqrt{5}\)) - (x + y + \(\sqrt{5}\))
= x + y - \(\sqrt{5}\) - x - y -\(\sqrt{5}\)
= -2\(\sqrt{5}\)
e) a2 + 2ab + b2 - ac - bc = (a2 + 2ab + b2) - (ac + bc)
= (a + b)2 - c(a + b)
= [(a + b) - c].(a + b)
= (a + b - c)(a + b)
Còn câu b) và câu f) Vàng sẽ nghĩ sau :v
Tiếp câu f luôn !
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
Bài làm:
a) \(x^2-2xy+y^2-zx+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(\left(x-y\right)\left(x-y-z\right)\)
a/ \(x^2-2xy+y^2-zx+yz.\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c/ \(x^2-y^2-2x-2y.\)
\(=x^2-2x+1-y^2-2y-1\)
\(=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)
\(=\left(x-1\right)^2-\left(y+1\right)^2\)
\(=\left(x-1+y+1\right)\left(x-1-y-1\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
Phân tích đa thức thành nhân tử
a. 3ab ( x+ y) - 6ab ( y+ x)
=( x + y) ( 3ab - 6ab )
= ( x +y ) ( - 3ab)
b.7a (x - 3)+a2(x2 - 9)
=7a( x- 3) + a2 ( x2 - 32)
=7a ( x - 3 ) + a2 ( x- 3 ) ( x+3 )
= ( x- 3) . 7a + a2 ( x + 3)
= ( x- 3) ( 7a +a2x + 3a2)
c. 34 (x + y) -x -y
= 34 ( x+ y) - ( x+y)
=(x +y ) ( 34 - 1) = 33 ( x+ y)
d. 25 x4 - 942
=( 5x2 )2 - 942
=( 5x2 - 94 ) ( 5x2+94)
e.( 5a - b )2 - ( 2a +3b)2
=( 5a -b -2a - 3b) (5a -b + 2a + 3b)
=(3a - 4b) (7a+ 2b)
k. 22 -3a - b2 +3b
=( 22 - b2 ) + ( -3a +3b)
=( 2-b) (2+b) + 3( -a +b)
Bài 1:
a) \(x^2-y^2-2yz-z^2\)
\(=x^2-\left(y^2+2yz+z^2\right)\)
\(=x^2-\left(y+z\right)^2\)
\(=\left(x+y+z\right)\left(x-y-z\right)\)
b) \(2xy-x^2-y^2+16\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=\left(4+x-y\right)\left(4-x+y\right)\)
c) \(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4c^2\right)\)
\(=3\left[\left(a^2-2ab+b^2\right)-\left(2c\right)^2\right]\)
\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)
\(=3\left(a-b-2c\right)\left(a-b+2c\right)\)
Bài 2:
a) \(37,5\cdot8,5-7,5\cdot3,4+6,6\cdot7,5+1,5\cdot37,5\)
\(=\left(37,5\cdot8,5+1,5\cdot37,5\right)-\left(7,5\cdot3,4-6,6\cdot7,5\right)\)
\(=37,5\cdot\left(8,5+1,5\right)-7,5\cdot\left(3,4-6,6\right)\)
\(=37,5\cdot10-7,5\cdot10\) (mk đoán đề bạn chép sai)
\(=10\cdot\left(37,5-7,5\right)\)
\(=10\cdot30\)
\(=300\)
b) \(35^2+40^2-25^2+80\cdot35\)
\(=\left(40^2+2\cdot40\cdot35+35^2\right)-25^2\)
\(=\left(40+35\right)^2-25^2\)
\(=75^2-25^2\)
\(=\left(75+25\right)\left(75-25\right)\)
\(=100\cdot50\)
\(=5000\)
Bài 1:
a, \(x^2-y^2-2yz-z^2=x^2-\left(y^2+2yz+z^2\right)\)
\(=x^2-\left(y+z\right)^2=\left(x-y-z\right)\left(x+y+z\right)\)
b, \(2xy-x^2-y^2+16=16-\left(x^2-2xy+y^2\right)\)
\(=16-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)
c, \(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a-b\right)^2-12c^2=3\left[\left(a-b\right)^2-4c^2\right]\)
\(=3\left(a-b+2c\right)\left(a-b-2c\right)\)
Bài 2:
a, \(37,5.8,5-7,5.3,4+6,6.7,5+1,5.37,5\)
\(=37,5.\left(8,5+1,5\right)-7,5.\left(3,4+6,6\right)\)
\(=37,5.10-7,5.10=10.\left(37,5-7,5\right)\)
\(=10.30=300\)
b, \(35^2+40^2-25^2+80.35\)
\(=\left(40^2+2.40.35+35^2\right)-25^2\)
\(=\left(40+35\right)^2-25^2=75^2-25^2\)
\(=\left(75-25\right)\left(75+25\right)=50.100=5000\)