Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\\ =\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\\ =\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+\left(-\dfrac{1}{6}+\dfrac{1}{6}\right)+\left(-\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{8}\right)\\ =\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{8}=1-\dfrac{1}{8}=\dfrac{8-1}{8}=\dfrac{7}{8}\)
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
`=`\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}\)
`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
`=`\(1-\dfrac{1}{8}\)
`=`\(\dfrac{7}{8}\)
1/2+1/6+1/12+1/20+...+1/380
=1/1.2+ 1/2.3+ 1/3.4+ 1/4.5+...+ 1/19.20
= 1/1-1/2+ 1/2-1/3+ 1/3-1/4+ 1/4-1/5+...+1/19-1/20
=1-1/29
=29/29-1/29
= 28/29
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{110}\)
= \(\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{10\times11}\)
= \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
= \(\dfrac{1}{3}-\dfrac{1}{11}=\dfrac{8}{33}\)
2 - x = 1/5 : 1/4
2 - x = 1/5 * 4
2 - x = 4/5
x = 2 - 4/5
x = 6/5
3 - x = 1/3 : 1/6
3 - x = 1/3 * 6
3 - x = 2
x = 3 - 2
x = 1
b) 1/3 * 1/2 + 1/5 * 1/2
= 1/2 * (1/3 + 1/5)
= 1/2 * 8/15
= 4/15
373737/414141 : 4545/4141
= 37/41 : 45/41
= 37/41 * 41/45
= 37/45
2727/4242 + 13/42 + 444444/424242
= 9/14 + 13/42 + 22/21
= 2
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\)+...+ \(\dfrac{1}{812}\) + \(\dfrac{1}{870}\)
A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{28\times29}\)+ \(\dfrac{1}{29\times30}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +...+\(\dfrac{1}{28}\)-\(\dfrac{1}{29}\)+ \(\dfrac{1}{29}\) - \(\dfrac{1}{30}\)
A = 1 - \(\dfrac{1}{30}\)
A = \(\dfrac{29}{30}\)
29/30 nha