Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^2+9x+20=0\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-5\end{matrix}\right.\).
Xét 2 TH:
+) a + b = -4; ab = -5: Theo định lý Viet đảo ta có a, b là hai nghiệm của pt \(t^2+4t-5=0\Leftrightarrow\left(t-1\right)\left(t+5\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-5\end{matrix}\right.\)
+) a + b = -5; ab = -4: Bạn giải tương tự.
a/x4-8x2-9=0=>(x2-9)(x2+1)=0
=>x2-9=0(vì(x2+1>0)
=>x=\(\pm3\)
vậy phương trình có tập nghiệm S=\(\left\{3;-3\right\}\)
b/\(x^4-7x^2-144=0\Leftrightarrow\left(x^2-16\right)\left(x^2+9\right)=0\\ \Leftrightarrow x^2-16=0\Leftrightarrow x=\pm4\)
vậy...
c/\(36x^4-13x^2+0\Leftrightarrow\left(4x^2-1\right)\left(9x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{1}{2}\\x=\pm\frac{1}{3}\end{matrix}\right.\)
vậy...
a, Do \(x=-4\)là một nghiệm của pt trên nên
Thay \(x=-4\)vào pt trên pt có dạng :
\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)
Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)
\(\Delta=9-4.\left(-28\right)=9+112=121>0\)
vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)
b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)
Đề bài của b thiếu vế phải nên mihf mặc định bằng 0 luôn nha.
a) m=-1 => \(x^2-x-2=0\)
Xét a-b+c=1+1-2=0
=>x1= -1 ; x2=2
b) Delta =\(\left(2m+1\right)^2-4\left(m^2+3m\right)=4m^2+4m+1-4m^2-12m=-8m+1\)
Pt có 2 nghiệm pb=> \(-8m+1\ge0\Leftrightarrow m\le\frac{1}{8}\)
ÁP dụng định lí Viets ta có:
x1+x2=-2m-1
x1.x2=\(m^2+3m\)
Ta có: x1.x2=4
=>\(m^2+3m=4\Leftrightarrow m^2+3m-4=0\)
Xét a+b+c=1+3-4=0
=>m1= 1(loại)
m2=-4(thỏa mãn)
Vậy m=-4
a: \(\Leftrightarrow x^2-3x+\dfrac{9}{4}=\dfrac{5}{4}\)
=>(x-3/2)2=5/4
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{3}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{-\sqrt{5}+3}{2}\end{matrix}\right.\)
b: \(x^2+\sqrt{2}x-1=0\)
nên \(x^2+2\cdot x\cdot\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow\left(x+\dfrac{\sqrt{2}}{2}\right)^2=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{6}}{2}\\x+\dfrac{\sqrt{2}}{2}=-\dfrac{\sqrt{6}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-\sqrt{2}}{2}\\x=\dfrac{-\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)
c: \(5x^2-7x+1=0\)
\(\Leftrightarrow x^2-\dfrac{7}{5}x+\dfrac{1}{5}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{10}+\dfrac{49}{100}=\dfrac{29}{100}\)
\(\Leftrightarrow\left(x-\dfrac{7}{10}\right)^2=\dfrac{29}{100}\)
hay \(x\in\left\{\dfrac{\sqrt{29}+7}{10};\dfrac{-\sqrt{29}+7}{10}\right\}\)