K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

A B F E D M C

a,Ta có \(FM//AD\left(gt\right)\Rightarrow\widehat{EFA}=\widehat{DAB}\left(đvị\right);\widehat{FEA}=\widehat{DAE}\left(slt\right)\)

mà \(\widehat{DAB}=\widehat{DAE}\Rightarrow\widehat{EFA}=\widehat{FEA}\)

\(\Rightarrow\Delta AFE\)cân tại A

xét \(\Delta BMF\left(AD//MF\right)\)Áp dụng định lí ta-let ta có 

\(\frac{BF}{AF}=\frac{BM}{DM}\)

b, \(\Delta ABC\)có AD là đường phân giác 

\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}^{^{\left(1\right)}}\)

Ta có AD//EM => \(\widehat{EMD}=\widehat{ADB};\widehat{ADM}=\widehat{EMC}\left(đvị\right)\)

Xét \(\Delta ECM\)và \(\Delta ACD\)

\(\widehat{C}:chung \)

\(\widehat{EMC}=\widehat{ADC}\left(cmt\right)\)

\(\Rightarrow\Delta ECM\)VÀ \(\Delta ACD\)đồng dạng (g.g)

\(\Rightarrow\frac{CM}{CE}=\frac{CD}{CA}^{^{\left(2\right)}}\)

Chứng minh tương tự ta có 

\(\Delta ABD\)và \(\Delta FAM\)đồng dạng (g.g)

\(\Rightarrow\frac{DB}{AB}=\frac{MB}{BF}^{^{\left(3\right)}}\)

Từ (1)(2)(3) \(\Rightarrow\frac{CM}{CE}=\frac{MB}{BF}\)  mà CM=MB (gt) nên CE=BF

p/s: câu c để mình nghĩ tiếp

23 tháng 5 2021

A B C P M N D E F

a) Ta có ^APB = ^BAC/2 + ^ABC/2 + ^ACB = 900 + ^ACB/2 = ^AMP; ^BAP = MAP

Suy ra \(\Delta\)AMP ~ \(\Delta\)APB (g.g) => \(\frac{AM}{PM}=\frac{AP}{BP}\). Tương tự \(\frac{PN}{BN}=\frac{AP}{BP}\)

Từ đó \(\frac{AM}{BN}.\frac{PN}{PM}=\left(\frac{AP}{BP}\right)^2\). Dễ thấy PM = PN, vậy \(\frac{AM}{BN}=\left(\frac{AP}{BP}\right)^2\)

b) Theo hệ thức lượng và tam giác đồng dạng, ta có biến đổi sau:

\(\frac{AM}{AC}+\frac{BN}{BC}+\frac{CP^2}{BC.AC}\)

\(=\frac{AM}{AP}.\frac{AP}{AC}+\frac{BN}{BP}.\frac{BP}{BC}+\frac{CP^2}{BC.AC}\)

\(=\frac{AP^2}{AB.AC}+\frac{BP^2}{BA.BC}+\frac{CP^2}{CA.CB}\)

\(=\frac{AP^2.BC+BP^2.CA+CP^2.AB}{BC.CA.AB}\)

\(=\frac{AP^2.\sin A+BP^2.\sin B+CA^2.\sin C}{2S}\)(S là diện tích tam giác ABC)

\(=\frac{AP^2.\sin\frac{A}{2}.\cos\frac{A}{2}+BP^2.\sin\frac{B}{2}.\cos\frac{B}{2}+CP^2.\sin\frac{C}{2}.\cos\frac{C}{2}}{S}\)

\(=\frac{FA.FP+DB.DP+EC.EP}{S}=\frac{dt\left[AFPE\right]+dt\left[BDPF\right]+dt\left[CEPD\right]}{S}=1.\)

21 tháng 12 2024

Gia sử AB < AC

Kẻ BM,CN // DE , trung tuyến AF

Tam giác BMF = tam giác CNF ( g.c.g)

=> MF = NF

=> AB/AD = AM/AG ; AC/AE = AN/AG

=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )

=> ĐPCM

Tk mk nha

20 tháng 12 2018

\(a^3+b^3=2.\left(c^3-8d^3\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3c^2-15d^3⋮3\)

\(a^3+b^3+c^3+d^3-\left(a+b+c+d\right)⋮3\Rightarrow a+b+c+d⋮3\)

tự c/n \(a^3+b^3+c^3+d^3-\left(a+b+c+d\right)⋮3\)nha, gợi ý 1 cái rồi còn lại tương tự

\(a^3-a=a.\left(a^2-1\right)=a.\left(a-1\right).\left(a+1\right)\)chia hết cho 3( vì a,b,c,d thuộc Z)

ợ mk ngu toán lắm, bn lm ơn giải rõ ràng ra hộ nhaaa

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh: a)\(\frac{BD}{BC}=\frac{1}{3}\) b)\(BD=DE=EC\) Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\) Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA',...
Đọc tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:

a)\(\frac{BD}{BC}=\frac{1}{3}\)

b)\(BD=DE=EC\)

Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.

Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)

Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.

Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:

a)EF//HK

b)EF//BC

Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:

a)\(DA.EG=DB.DE\)

b)\(HC^2=HE.HA\)

c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)

0