Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x+y=10=>\left(x+y\right)^2=10^2=100\)
\(=>x^2+2xy+y^2=100\)
Mà : \(xy=21\)
\(=>x^2+y^2+2.21=100\)
\(=>x^2+y^2=58\)
\(=>x^2-2xy+y^2=\left(x-y\right)^2\)
\(=>58-2.21=\left(x-y\right)^2\)
\(=>16=\left(x-y\right)^2\)
\(=>\sqrt{16}=x-y\)
\(=>x-y=4\)
Cấm ai chép nha
(x+y)^2 =a^2
x^2 +2xy +y^2 =a^2
x^2+y^2 =a^2-2xy =a^2 -2b
x^3 +y^3 = (x+y)(x^2 -xy +y^2)
=a(a^2-2b-b)
=a(a^2-3b)
=a^3- 3ab
(x^2 +y^2)^2=(a^2-2b)^2 ( cái này tính cho x^4 + y^4)
tương tự như câu đầu tiên
x^5+ y^5 (cái đó mình không biết)
a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)
\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)
\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)
b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)
\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)
\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
a) \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2.\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3.\left(-6\right).1=19\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=13.19-\left(-6\right)^2.1=211\)
b) \(x^2+y^2=\left(x-y\right)^2+2xy=1^1+2.6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+3.6.1=19\)
\(x^5-y^5=\left(x^2+y^2\right)\left(x^3-y^3\right)+x^2y^2\left(x-y\right)=13.19+6^2.1=283\)
a ) \(x^2-2xy+y^2-1\)
\(=\left(x-y\right)^2-1\)
\(=\left(-3\right)^2-1\)
\(=9-1\)
\(=8\)
b ) \(x^2+y^2\)
\(=x^2-20+y^2+20\)
\(=x^2-2.10+y^2+20\)
\(=x^2-2xy+y^2+20\)
\(=\left(x-y\right)^2+20\)
\(=\left(-3\right)^2+20\)
\(=29\)
a) \(x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
b) Có: \(x^2-2xy+y^2=9\)
=> \(x^2+y^2=9+2xy=9+2\cdot10=9+20=29\)
Ta có: \(xy=-21\)
\(\Leftrightarrow2xy=-42\)
Ta có: \(x-y=-10\)
\(\Leftrightarrow\left(x-y\right)^2=100\)
\(\Leftrightarrow x^2-2xy+y^2=100\)
\(\Leftrightarrow x^2+y^2-\left(-42\right)=100\)
\(\Leftrightarrow x^2+y^2+42=100\)
\(\Leftrightarrow x^2+y^2=58\)
Ta có: \(A=x^3-y^3\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=-10\cdot\left[58+\left(-21\right)\right]\)
\(=-10\cdot\left[58-21\right]\)
\(=-10\cdot37=-370\)
Vậy: A=-370