Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
a) ÁP dụng Pytago ta có: AH2 + HB2 = AB2
=> AB2 = 62 + 4,52 =56,25
=> AB = 7,5
Áp dụng hệ thức lượng ta có: AB2 = BH.BC
=> \(BC=\frac{AB^2}{BH}=12,5\)
=> \(HC=BC-BH=12,5-4,5=8\)
Áp dụng hệ thức lượng ta có:
\(AC^2=HC.BC\)
=> \(AC=\sqrt{HC.BC}=10\)
a. Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:
AC2 = HC . BC => HC = \(\frac{AC^2}{BC}\)= \(\frac{6^2}{12}\)= 3cm
=> BH = BC - HC = 12 - 3 = 9cm
b. Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:
AH2 = BH . HC = 2 . 5 = 10 => AH = \(\sqrt{10}\)cm
Xét ΔABH và ΔACH \(\left(\widehat{H}=90^o\right)\)theo định lí py - ta - go ta có:
\(AB=\sqrt{BH^2+AH^2}=\sqrt{2^2+\sqrt{10}^2}=\sqrt{14}cm\)
\(AC=\sqrt{HC^2+AH^2}=\sqrt{5^2+\sqrt{10^2}}=\sqrt{35}cm\)
c. Xét ΔAHC \(\left(\widehat{AHC}=90^o\right)\)theo định lí py - ta - go ta có:
\(AC=\sqrt{HC^2+AH^2}=\sqrt{3^2+4^2}=5cm\)
Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:
\(AH^2=HC.BH=>BH=\frac{AH^2}{HC}=\frac{4^2}{3}=\frac{16}{3}cm\)
\(AB=\sqrt{BH^2+AH^2}=\sqrt{\left(\frac{16}{3}\right)^2+4^2}=\frac{20}{3}cm\)
d. Ta có: \(\frac{AB}{AC}=\frac{3}{4}=>4AB=3AC< =>4.6=3AC< =>24=3AC< =>AC=8cm\)
Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo định lí py - ta - go ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10cm\)
Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}=>AH^2=\frac{576}{25}=23.04=>AH=\sqrt{23.04}=4,8cm\)
Xét ΔABH \(\left(\widehat{H}=90^o\right)\)theo định lí py - ta - go ta có:
\(BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4.8^2}=3,6cm\)
=> HC = BC - BH = 10 - 3,6 = 6,4cm
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
a) \(AH^2=HB.HC=50.8=400\)
\(\Rightarrow AH=20\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)
mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)
\(\Rightarrow AB.AC=20.58=1160\)
Theo Pitago cho tam giác vuông ABC :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)
\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)
\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)
\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)
Chu vi Δ ABC :
\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)
Bài 1:
B A C H D
\(BC=CD+BD=68+51=119\)
\(AD\)là phân giác \(\widehat{BAC}\)\(\Rightarrow\)\(\frac{BD}{AB}=\frac{DC}{AC}\)hay \(\frac{51}{AB}=\frac{68}{AC}\)
\(\Leftrightarrow\)\(\frac{51^2}{AB^2}=\frac{68^2}{AC^2}=\frac{51^2+68^2}{AB^2+AC^2}=\frac{25}{49}\)
suy ra: \(\frac{51^2}{AB^2}=\frac{25}{49}\)\(\Rightarrow\)\(AB=71,4\)
ÁP dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Leftrightarrow\)\(BH=\frac{AB^2}{BC}=\frac{71,4^2}{119}=42,84\)
\(\Rightarrow\)\(CH=BC-BH=119-42,84=76,16\)
Bài 2:
B A C H
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow\)\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow\)\(BH^2=7,5^2-6^2=20,25\)
\(\Leftrightarrow\)\(BH=4,5\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}=\frac{7,5^2}{4,5}=12,5\)
\(AB.AC=BC.AH\)
\(\Rightarrow\)\(AC=\frac{BC.AH}{AB}=\frac{12,5.6}{7,5}=10\)
b) \(cosB=\frac{AC}{BC}=\frac{10}{12,5}=0.8\)
\(cosC=\frac{AB}{BC}=\frac{7,5}{12,5}=0,6\)