Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
Hình tự túc, vẽ khó quá.
a) ACB^ = ECN^ (đđ)
Mà ACB^ = ABC^ (do \(\Delta\) ABC cân)
=> ABC^ = ECN^
Xét \(\Delta\)BDM và \(\Delta\)CEN :
BDM^ = CEN^ = 90o
BD = CE
ABC^ = CEN^
=> \(\Delta\)BDM = \(\Delta\)CEN (cạnh góc vuông_ góc nhọn)
=> DM = EN (2 cạnh tương ứng)
b) MD _|_ BC; NE_|_ BC => MD // NE
=> DMI^ = ENI^ (sole trong)
Xét \(\Delta\)DMI và \(\Delta\)ENI:
MDI^ = NEI^ = 90o
MD = EN (cmt)
DMI^ = ENI (cmt)
=> \(\Delta\)DMI và \(\Delta\)ENI (cạnh góc vuông_góc nhọn)
=> IM = IN (1)
Vì I là giao điểm của MN và BC nên I nằm trên MN (2)
Từ (1) và (2) => I là trung điểm của MN
c) Xét \(\Delta\)ABO và \(\Delta\)ACO:
AO chung
BAO^ = CAO^
AB = AC
=> \(\Delta\)ABO = \(\Delta\)ACO (c.g.c)
d) ko bt (cần thời gian suy nghĩ, và có thể bí luôn)
B C A D E M N I H K
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)