K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2016

Hình bạn tự vẽ nhé!

a. Ta có:

M là trung điểm của AC => BM là đường trung tuyến của tam giác ABC.

N là trung điểm của AB  => CN là đường trung tuyến của tam giác ABC.

Mà tam giác ABC cân.

=> BM = CN

Ta có AN + NB = AB

          AM + MC = AC

Mà AN = NB ( N là trung điểm của AB)

     AM = MC ( M là trung điểm của AC)

     AB = AC ( tam giác ABC cân tại A)

=> AN = NB=AM = MC

Xét tam giác ABM và tam giác ACN có:

AB = AC (GT)

BM = CN (cmt)

AM = AN (cmt)

=> tam giác ABM = tam giác ACN (cạnh-cạnh-cạnh)

=> Góc ABM = góc ACN ( hai góc tương ứng)

b. Ta có:

Góc ABM + góc MBC = góc ABC

Góc ACN + góc NCB = góc ACB

Mà góc ABM = góc ACN (cmt)

      góc ABC = góc ACB (tam giác ABC cân tại A)

=> Góc MBC = góc NCB

=> Tam giác IBC cân tại I.

 

14 tháng 6 2016

Đợi mk chút, để nghiên cứu đã

9 tháng 3 2018
Ta có : AB = AC ( tam giác ABC cân tại A) mà M, N lần lượt là trung điểm của AC và AB suy ra AN = AM Xét tam giác ABM và tam giác ACN có : Góc A : góc chung AM = AN ( cmt) AB = AC ( tam giác ABC cân tại A) Suy ra tam giác ABM = tam giác ACN ( c - g - c) Suy ra BM = CN ( 2 cạnh t/ứng) b/ Có tam giác ABM = tam giác ACN ( theo câu a) Suy ra góc ABM = góc ACN ( 2 góc t/ứng) Có góc ABM + góc MBC = góc B Góc ACN + góc NCB = góc C mà góc B = góc C (tam giác ABC cân tại A), góc ABM = góc ACN ( cmt) suy ra góc IBC = góc ICB suy ra tam giác IBC cân tại I c/ Có tam giác IBC cân tại B ( theo câu b) suy ra IB = IC Xét tam giác AIB và tam giác AIC có : AI : cạnh chung AB = AC (tam giác ABC cân tại A) IB = IC ( cmt) Suy ra tam giác AIB = tam giác AIC ( c - c - c) Suy ra góc BAI = góc CAI ( 2 góc t/ứng) mà AI nằm giữa 2 tia AB và AC Suy ra AI là tia phân giác góc A d/ Gọi H là giao điểm của AI và BC Xét tam giác AHB và tam giác AHC có : Góc B = góc C ( tam giác ABC cân tại A) AB = AC ( tam giác ABC cân tại A) Góc BAI = góc CAI ( AI là tia phân giác góc A) Suy ra tam giác AHB = tam giác AHC ( g - c - g) Suy ra góc AHB = góc AHC( 2 góc t/ứng) mà góc AHB + góc AHC = 180 độ suy ra AHB = 90 độ suy ra AI vuông góc với BC Bạn tự vẽ hình nhé
6 tháng 3 2018

minh can gap ik

5 tháng 3 2017

CM BNC=CMB

MC=BN ; \(\widehat{B}=\widehat{C}\) ; BC chung

\(\Rightarrow\)BM=CN

CM ABM=ACN

AB=AC ; AM=AN ; \(\widehat{A}\) chung

\(\Rightarrow\)ABM  =ACN \(\Rightarrow\) \(\widehat{ABM}=\widehat{ACN}\)

b     \(\widehat{ABM}=\widehat{ACN}\)  \(\Rightarrow\)\(\widehat{ABI}=\widehat{ACI}\)

    \(\Rightarrow\)   \(\widehat{AMB}=\widehat{ANC}\)\(\Rightarrow\)\(\widehat{BMC}=\widehat{CNB}\)

Xét BIN vs CIM : BN=CM ; \(\widehat{ACM}=\widehat{ACN};\)\(\widehat{BMC}=\widehat{CNB}\)

\(\Rightarrow\) IB=IC \(\Rightarrow\)IBC cân

c,  Xét AIB và AIC : IB =IC ; \(\widehat{ABI}=\widehat{ACI};AB=AC\)      
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\)\(\Rightarrow\)AI pg góc A

d,      xét BAD và CAD

góc BAI = CAI ; AB=AC ; AD chung 

\(\Rightarrow\)góc ADB = ADC  mà chúng cộng nhau = 180 \(\Rightarrow\)\(\widehat{D}\)= 90

20 tháng 6 2016

a, Ta có:

góc CAN + BAM + BAC = 180 độ 

mà góc BAC = 90 ( tam giác ABC vuông cân tại A )

 \(\Rightarrow\)BAM + CAN = 90 độ ( 1 )

Xét tam giác MBA vuông tại M , ta có:

BAM + ABM  = 90 độ ( tổng 2 góc nhọn trong tam giác vuông ) ( 2 )

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow\)CAN + BAM = BAM + ABM 

\(\Rightarrow\)CAN = ABM 

Xét tam giác vuông MAB và tam giác vuông NCA , ta có :

AB = AC ( tam giác ABC vuông cân tại A )

CAN = ABM 

\(\Rightarrow\)\(\Delta\)MAB = \(\Delta\)NCA ( ch - gn )

b, Vì \(\Delta MAB=\Delta NCA\)(CMT)

\(\Rightarrow\)AM = CN ( 2 cạnh tương ứng )

Xét \(\Delta MBA\)vuông tại M , ta có :

\(BM^2+AM^2=AB^2\)( định lý Py - ta - go )

mà AM = CN ( CMT )

\(\Rightarrow BM^2+CN^2=AB^2\)( ĐPCM)

20 tháng 6 2016

a) Đường thẳng d đi qua A mà k cắt BC => d // BC (1)

; BM  |  d ; CN  |  d => BM // CN (2)

Từ (1) và (2) => BM = CN (tính chất đoạn chắn)

Xét hai tam giác vuông MAB và NCA có :

AB = DC (do tam giác ABC vuông cân tại A)

BM = CD (cmt)

\(\Rightarrow\Delta MAB=\Delta NCA\) (cạnh huyền - cạnh góc vuông)

b) Từ \(\Delta MAB=\Delta NCA\) (câu a) \(\Rightarrow\widehat{A}=\widehat{C}\) và \(\widehat{B}=\widehat{A}\)

\(\Rightarrow\widehat{B}=\widehat{C}\) \(\Rightarrow\widehat{MAB}=\widehat{NAC}\) (3) (vì cụng phụ với 2 góc bằng nhau)

; mà \(\widehat{BAC}+\widehat{MAB}+\widehat{NAC}=180^o\) (kề bù) , \(\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{MAB}+\widehat{NAC}=90^o\) (4)

Từ (3) và (4) \(\Rightarrow\widehat{MAB}=\widehat{NAC}=45^o\)

\(\Rightarrow\) Tam giác MAB vuông cân tại M

\(\Rightarrow AM=AB\)

Đã có BM = CN (cm a) \(\Rightarrow AM=CN\)

Xét tam giác vuông AMB có \(AB^2=BM^2+AM^2\) hay \(AB^2=BM^2+CN^2\)

4 tháng 2 2017

Hình thì Wii tự vẽ nhé.

1/ Ta có:\(AH⊥MN\) (giả thuyết)

AH là phân giác trong của  \(\widehat{A}\)(giả thuyết)

\(\Rightarrow AH\) vừa là đường cao vừa là đường phân giác của \(\widehat{A}\) trong \(\Delta MAN\)

\(\Rightarrow\Delta MAN\)cân tại A

\(\Rightarrow MH=HN=\frac{MN}{2}\)

\(\Rightarrow AN^2=AH^2+HN^2=AH^2+\frac{MN^2}{4}\)

2/ Từ B kẽ BK // CN

\(\Rightarrow\widehat{BKM}=\widehat{ANM}\)

Mà \(\widehat{AMN}=\widehat{ANM}\)(do \(\Delta MAN\)cân tại A)

\(\Rightarrow\widehat{BKM}=\widehat{AMN}\)

\(\Rightarrow\Delta MBK\) cân tại B

\(\Rightarrow BM=BK\left(1\right)\)

Xét \(\Delta BKD\)và \(\Delta CND\)

\(\widehat{KBD}=\widehat{NCD}\)(hai góc so le trong)

\(BD=DC\)(gt)

\(\widehat{BDK}=\widehat{CDN}\)

\(\Rightarrow\Delta BKD=\Delta CND\)

\(\Rightarrow BK=CN\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BM=CN\)

3/ Ta có: \(\widehat{FMN}=\widehat{FMA}+\widehat{AMN}=90+\widehat{AMN}\)

\(\widehat{MAI}=\widehat{MHA}+\widehat{AMN}=90+\widehat{AMN}\)

\(\Rightarrow\widehat{FMN}=\widehat{MAI}\left(3\right)\)

Xét  \(\Delta FMN\)và \(\Delta MAI\)

\(FM=MA\)(gt)

\(\widehat{FMN}=\widehat{MAI}\)(theo 3)

\(MN=AI\)

\(\Rightarrow\Delta FMN=\Delta MAI\)