Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM BNC=CMB
MC=BN ; \(\widehat{B}=\widehat{C}\) ; BC chung
\(\Rightarrow\)BM=CN
CM ABM=ACN
AB=AC ; AM=AN ; \(\widehat{A}\) chung
\(\Rightarrow\)ABM =ACN \(\Rightarrow\) \(\widehat{ABM}=\widehat{ACN}\)
b \(\widehat{ABM}=\widehat{ACN}\) \(\Rightarrow\)\(\widehat{ABI}=\widehat{ACI}\);
\(\Rightarrow\) \(\widehat{AMB}=\widehat{ANC}\)\(\Rightarrow\)\(\widehat{BMC}=\widehat{CNB}\)
Xét BIN vs CIM : BN=CM ; \(\widehat{ACM}=\widehat{ACN};\)\(\widehat{BMC}=\widehat{CNB}\)
\(\Rightarrow\) IB=IC \(\Rightarrow\)IBC cân
c, Xét AIB và AIC : IB =IC ; \(\widehat{ABI}=\widehat{ACI};AB=AC\)
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\)\(\Rightarrow\)AI pg góc A
d, xét BAD và CAD
góc BAI = CAI ; AB=AC ; AD chung
\(\Rightarrow\)góc ADB = ADC mà chúng cộng nhau = 180 \(\Rightarrow\)\(\widehat{D}\)= 90
a, Ta có:
góc CAN + BAM + BAC = 180 độ
mà góc BAC = 90 ( tam giác ABC vuông cân tại A )
\(\Rightarrow\)BAM + CAN = 90 độ ( 1 )
Xét tam giác MBA vuông tại M , ta có:
BAM + ABM = 90 độ ( tổng 2 góc nhọn trong tam giác vuông ) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow\)CAN + BAM = BAM + ABM
\(\Rightarrow\)CAN = ABM
Xét tam giác vuông MAB và tam giác vuông NCA , ta có :
AB = AC ( tam giác ABC vuông cân tại A )
CAN = ABM
\(\Rightarrow\)\(\Delta\)MAB = \(\Delta\)NCA ( ch - gn )
b, Vì \(\Delta MAB=\Delta NCA\)(CMT)
\(\Rightarrow\)AM = CN ( 2 cạnh tương ứng )
Xét \(\Delta MBA\)vuông tại M , ta có :
\(BM^2+AM^2=AB^2\)( định lý Py - ta - go )
mà AM = CN ( CMT )
\(\Rightarrow BM^2+CN^2=AB^2\)( ĐPCM)
a) Đường thẳng d đi qua A mà k cắt BC => d // BC (1)
; BM | d ; CN | d => BM // CN (2)
Từ (1) và (2) => BM = CN (tính chất đoạn chắn)
Xét hai tam giác vuông MAB và NCA có :
AB = DC (do tam giác ABC vuông cân tại A)
BM = CD (cmt)
\(\Rightarrow\Delta MAB=\Delta NCA\) (cạnh huyền - cạnh góc vuông)
b) Từ \(\Delta MAB=\Delta NCA\) (câu a) \(\Rightarrow\widehat{A}=\widehat{C}\) và \(\widehat{B}=\widehat{A}\)
\(\Rightarrow\widehat{B}=\widehat{C}\) \(\Rightarrow\widehat{MAB}=\widehat{NAC}\) (3) (vì cụng phụ với 2 góc bằng nhau)
; mà \(\widehat{BAC}+\widehat{MAB}+\widehat{NAC}=180^o\) (kề bù) , \(\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{MAB}+\widehat{NAC}=90^o\) (4)
Từ (3) và (4) \(\Rightarrow\widehat{MAB}=\widehat{NAC}=45^o\)
\(\Rightarrow\) Tam giác MAB vuông cân tại M
\(\Rightarrow AM=AB\)
Đã có BM = CN (cm a) \(\Rightarrow AM=CN\)
Xét tam giác vuông AMB có \(AB^2=BM^2+AM^2\) hay \(AB^2=BM^2+CN^2\)
Hình thì Wii tự vẽ nhé.
1/ Ta có:\(AH⊥MN\) (giả thuyết)
AH là phân giác trong của \(\widehat{A}\)(giả thuyết)
\(\Rightarrow AH\) vừa là đường cao vừa là đường phân giác của \(\widehat{A}\) trong \(\Delta MAN\)
\(\Rightarrow\Delta MAN\)cân tại A
\(\Rightarrow MH=HN=\frac{MN}{2}\)
\(\Rightarrow AN^2=AH^2+HN^2=AH^2+\frac{MN^2}{4}\)
2/ Từ B kẽ BK // CN
\(\Rightarrow\widehat{BKM}=\widehat{ANM}\)
Mà \(\widehat{AMN}=\widehat{ANM}\)(do \(\Delta MAN\)cân tại A)
\(\Rightarrow\widehat{BKM}=\widehat{AMN}\)
\(\Rightarrow\Delta MBK\) cân tại B
\(\Rightarrow BM=BK\left(1\right)\)
Xét \(\Delta BKD\)và \(\Delta CND\)có
\(\widehat{KBD}=\widehat{NCD}\)(hai góc so le trong)
\(BD=DC\)(gt)
\(\widehat{BDK}=\widehat{CDN}\)
\(\Rightarrow\Delta BKD=\Delta CND\)
\(\Rightarrow BK=CN\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BM=CN\)
3/ Ta có: \(\widehat{FMN}=\widehat{FMA}+\widehat{AMN}=90+\widehat{AMN}\)
\(\widehat{MAI}=\widehat{MHA}+\widehat{AMN}=90+\widehat{AMN}\)
\(\Rightarrow\widehat{FMN}=\widehat{MAI}\left(3\right)\)
Xét \(\Delta FMN\)và \(\Delta MAI\)có
\(FM=MA\)(gt)
\(\widehat{FMN}=\widehat{MAI}\)(theo 3)
\(MN=AI\)
\(\Rightarrow\Delta FMN=\Delta MAI\)
Hình bạn tự vẽ nhé!
a. Ta có:
M là trung điểm của AC => BM là đường trung tuyến của tam giác ABC.
N là trung điểm của AB => CN là đường trung tuyến của tam giác ABC.
Mà tam giác ABC cân.
=> BM = CN
Ta có AN + NB = AB
AM + MC = AC
Mà AN = NB ( N là trung điểm của AB)
AM = MC ( M là trung điểm của AC)
AB = AC ( tam giác ABC cân tại A)
=> AN = NB=AM = MC
Xét tam giác ABM và tam giác ACN có:
AB = AC (GT)
BM = CN (cmt)
AM = AN (cmt)
=> tam giác ABM = tam giác ACN (cạnh-cạnh-cạnh)
=> Góc ABM = góc ACN ( hai góc tương ứng)
b. Ta có:
Góc ABM + góc MBC = góc ABC
Góc ACN + góc NCB = góc ACB
Mà góc ABM = góc ACN (cmt)
góc ABC = góc ACB (tam giác ABC cân tại A)
=> Góc MBC = góc NCB
=> Tam giác IBC cân tại I.
Đợi mk chút, để nghiên cứu đã