K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

a) Xét \(\Delta ABE\) và \(\Delta ACF\) có :

AB = AC (\(\Delta ABC\)cân)

\(\widehat{A}\)chung

=> \(\Delta ABE\) = \(\Delta ACF\) (cạnh huyền - góc nhọn)

b) Có CF và BE là 2 đường cao 

=> Giao điểm H là trực tâm

=> AH là đường cao của BC

c) Xét tứ giác BFEC , vì \(\Delta ABC\) cân 

=> \(\widehat{ABC}=\widehat{ACB}\)

=> Tứ giác BFEC là hình thang cân vì 2 góc kề đáy bằng nhau .

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

17 tháng 8 2021

Bạn vẽ hình ra nhé! chúc bạn thi tốt!!!

a) xét tam giác AEB và tam giac ÀFC có :góc E= góc F=90 độ

                                                                  góc A chung

                                                                  ab=ac( tam giác ABC cân tại A)

suy ra tam giác tg AEB= tg AFC( cạnh huyền-góc nhọn)

b)ta có tg AEB=tg AFC ( cmt)

suy ra AE=AF suy ra tam giác AFE cân tại A suy ra góc ÀFE= góc AEF=(180- góc A)/2             (1)

mà tg ABC cân tại A suy ra góc B = góc C= (180-góc A)/2       (2)

từ (1) và (2) suy ra góc AFE= góc B suy ra FE // BC( hai góc đồng vị)

suy ra tứ giác BCEF là hình thang

 

17 tháng 8 2021

Thank bn nha

 

27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

3 tháng 9 2016

Có: BE là tia pg của ^B(gt)

      CF là tia og của C(gt)

Mà ^B=^C

=> ^ABE=^CBE=^ACF=^BCF

b) Xét ΔABE và ΔACF có:

^A : góc chung

 AB=AC(gt)

^ABE=^ACF(cmt)

=>ΔABE=ΔACF(g..c.g)

=> AE=AF

=>ΔAEF cân tại A

=> \(\widehat{AFE\:}=\frac{180-\widehat{A}}{2}\)               (1)

Có: ΔABC cân tại A(gt)

=> \(\widehat{ABC}=\frac{180-\widehat{A}}{2}\)              (2)

Từ (1)(2) suy ra:

^AFE=^ABC. MÀ hai góc mày ở vị trí đồng vị

=>FE//BC

Mà ^B=^C(gt)

=> tứ giác BFEC là ht cân

3 tháng 9 2016

nhanh v

31 tháng 7 2016

a) ta có tam giác ABC cân tại A

=> góc B= góc C

=> 1/2 góc C= 1/2 góc B

=> ABE=ACF

xét tam giác ABE và tam giác AFC có:

AB=AC(gt)

A(chung)

ABE=ACF(cmt)

=> tam giac ABE= tam giác ACF(g.c.g)

=> AF=AE

=> tam giác AEF cân tại A

b)

ta có góc B= góc C

=> 1/2 góc B=1/2 góc C=>EBC=FCB

theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)

=> BE=CF

xét tam giác BFC vá tam giác CEB có

BE=CF(tam giác ABE= tam giác ACF)

FCB=ECB(cmt)

BC(chung)

=> tam giác BFC= tam giác CEB(c.g.c0

c)

tam giác AFE cân tại A

=>góc AFE=(180*-A)/2

tam giác ABC cân tại B=>ABC=(180*-A)/2

=> ABC=AFE

=> FE//BC(1)

ta có: FB=AB-AF

          EC=AC-AE

          AB=AC

        AF=AE

=> FB=EC(2)

từ (1)(2)=> tứ giác BFEC là hình thang cân

31 tháng 7 2016

a,Có:Trong tam giác cân,đường phân giác ứng với cạnh đáy đồng thời cũng là đường cao
=>Trong tam giác cân ABC,đường phân giác BE,CF ứng với cạnh đáy đồng thời cũng là đường cao
=>BE là đường cao của tam giác BCA(BE\(\perp\)AC)
     CF là đường cao của tam giác CAB(CF\(\perp\)AB)
Xét tam giác ABE và tam giác ACF có:
     góc AEB=góc AFC=90*(cmt)
     AB=AC(tam giác ABC cân tại A)
     góc A chung
=>tam giác ABE=tam giác ACF(cạnh huyền-góc nhọn)
=>AE=AF(2 cạnh tương ứng)
=>tam giác AEF cân  tại A
b,Có:tam giác ABC cân tại A
=>góc ABC=góc ACB
=>\(\frac{1}{2}ABC=\frac{1}{2}ACB\)
=>góc EBC=góc FCB(BE,CF là tia phân giác của góc B và C)
 Xét tam giác BFC và tam giác CEB có:
   góc CFB =góc BEC=90*(cmt)
   BE=CF(tam giác ABE=tam giác ACF)
   góc EBC=góc FCB(cmt)
=>tam giác BFC=tam giác CEB(cạnh huyền-góc nhọn)
c,Có: tam giác AEF cân tại A(chứng minh câu a)
=>góc AEF=(180*-góc A)/2(1)
Có: tam giác ABC cân tại A(gt)
=>góc ACB=(180*-góc A)/2(2)

Từ (1) và (2)=>góc AEF=góc ACB(=(180*-góc A)/2)
Mà hai góc này ở vị trí đồng vị
=>EF//BC
=>BFEC là hình thang(3)
mà CF=BE(tam giác ABE=tam giác ACF)(4)
Từ (3) và (4)=>Tứ giác BFEC là hình thang cân