Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Bạn vẽ hình ra nhé! chúc bạn thi tốt!!!
a) xét tam giác AEB và tam giac ÀFC có :góc E= góc F=90 độ
góc A chung
ab=ac( tam giác ABC cân tại A)
suy ra tam giác tg AEB= tg AFC( cạnh huyền-góc nhọn)
b)ta có tg AEB=tg AFC ( cmt)
suy ra AE=AF suy ra tam giác AFE cân tại A suy ra góc ÀFE= góc AEF=(180- góc A)/2 (1)
mà tg ABC cân tại A suy ra góc B = góc C= (180-góc A)/2 (2)
từ (1) và (2) suy ra góc AFE= góc B suy ra FE // BC( hai góc đồng vị)
suy ra tứ giác BCEF là hình thang
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
Có: BE là tia pg của ^B(gt)
CF là tia og của C(gt)
Mà ^B=^C
=> ^ABE=^CBE=^ACF=^BCF
b) Xét ΔABE và ΔACF có:
^A : góc chung
AB=AC(gt)
^ABE=^ACF(cmt)
=>ΔABE=ΔACF(g..c.g)
=> AE=AF
=>ΔAEF cân tại A
=> \(\widehat{AFE\:}=\frac{180-\widehat{A}}{2}\) (1)
Có: ΔABC cân tại A(gt)
=> \(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra:
^AFE=^ABC. MÀ hai góc mày ở vị trí đồng vị
=>FE//BC
Mà ^B=^C(gt)
=> tứ giác BFEC là ht cân
a) ta có tam giác ABC cân tại A
=> góc B= góc C
=> 1/2 góc C= 1/2 góc B
=> ABE=ACF
xét tam giác ABE và tam giác AFC có:
AB=AC(gt)
A(chung)
ABE=ACF(cmt)
=> tam giac ABE= tam giác ACF(g.c.g)
=> AF=AE
=> tam giác AEF cân tại A
b)
ta có góc B= góc C
=> 1/2 góc B=1/2 góc C=>EBC=FCB
theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)
=> BE=CF
xét tam giác BFC vá tam giác CEB có
BE=CF(tam giác ABE= tam giác ACF)
FCB=ECB(cmt)
BC(chung)
=> tam giác BFC= tam giác CEB(c.g.c0
c)
tam giác AFE cân tại A
=>góc AFE=(180*-A)/2
tam giác ABC cân tại B=>ABC=(180*-A)/2
=> ABC=AFE
=> FE//BC(1)
ta có: FB=AB-AF
EC=AC-AE
AB=AC
AF=AE
=> FB=EC(2)
từ (1)(2)=> tứ giác BFEC là hình thang cân
a,Có:Trong tam giác cân,đường phân giác ứng với cạnh đáy đồng thời cũng là đường cao
=>Trong tam giác cân ABC,đường phân giác BE,CF ứng với cạnh đáy đồng thời cũng là đường cao
=>BE là đường cao của tam giác BCA(BE\(\perp\)AC)
CF là đường cao của tam giác CAB(CF\(\perp\)AB)
Xét tam giác ABE và tam giác ACF có:
góc AEB=góc AFC=90*(cmt)
AB=AC(tam giác ABC cân tại A)
góc A chung
=>tam giác ABE=tam giác ACF(cạnh huyền-góc nhọn)
=>AE=AF(2 cạnh tương ứng)
=>tam giác AEF cân tại A
b,Có:tam giác ABC cân tại A
=>góc ABC=góc ACB
=>\(\frac{1}{2}ABC=\frac{1}{2}ACB\)
=>góc EBC=góc FCB(BE,CF là tia phân giác của góc B và C)
Xét tam giác BFC và tam giác CEB có:
góc CFB =góc BEC=90*(cmt)
BE=CF(tam giác ABE=tam giác ACF)
góc EBC=góc FCB(cmt)
=>tam giác BFC=tam giác CEB(cạnh huyền-góc nhọn)
c,Có: tam giác AEF cân tại A(chứng minh câu a)
=>góc AEF=(180*-góc A)/2(1)
Có: tam giác ABC cân tại A(gt)
=>góc ACB=(180*-góc A)/2(2)
Từ (1) và (2)=>góc AEF=góc ACB(=(180*-góc A)/2)
Mà hai góc này ở vị trí đồng vị
=>EF//BC
=>BFEC là hình thang(3)
mà CF=BE(tam giác ABE=tam giác ACF)(4)
Từ (3) và (4)=>Tứ giác BFEC là hình thang cân
a) Xét \(\Delta ABE\) và \(\Delta ACF\) có :
AB = AC (\(\Delta ABC\)cân)
\(\widehat{A}\)chung
=> \(\Delta ABE\) = \(\Delta ACF\) (cạnh huyền - góc nhọn)
b) Có CF và BE là 2 đường cao
=> Giao điểm H là trực tâm
=> AH là đường cao của BC
c) Xét tứ giác BFEC , vì \(\Delta ABC\) cân
=> \(\widehat{ABC}=\widehat{ACB}\)
=> Tứ giác BFEC là hình thang cân vì 2 góc kề đáy bằng nhau .