Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)
\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)
mà\(2x^2+2y^2-3z^2=-100\)
thay\(6k^2+8k^2-15k^2=-100\)
\(k^2\left(6+8-15\right)=-100\)
\(k^2.\left(-1\right)=-100\)
\(k^2=100\)
\(\Rightarrow k=\pm10\)
bạn thế vào nha
x/3 = y/4 = k
Nên x = 3k ; y = 4k
(3k)2 + (4k)2 = 100
=> 9k2 + 16k2 = 100
=> 25k2 = 100
k2 = 4
k thuộc {-2;2}
Nếu k = -2 thì x = -6 ; y = -8
Nếu k = 2 thì x = 6 ; y = 8
1. \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\frac{x^2}{9}=4\Rightarrow x^2=4.9=36\Rightarrow x=6\text{ hoặc }x=-6\)
=> \(\frac{y^2}{16}=4\Rightarrow y^2=4.16=64\Rightarrow y=8\text{ hoặc }y=-8\)
2. đặt y/3=x/4=k
=> y=3k; x=4k
x.y=48
=> 3k.4k=48
=> 12k2=48
=> k2=48:12
=> k2=4
=> k=2 hoặc k=-2
TH1: k=2
=> x=4k=4.2=8
=> y=3k=3.2=6
TH2: k=-2
=> x=4k=4.(-2)=-8
=> y=3k=3.(-2)=-6
Bạn lần sau đăng ít thôi nhé :)
a/ \(\frac{x}{y}=5\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{x+y}{5+1}=\frac{18}{6}=3\)
=> x = 15 , y = 3
b/ \(\frac{x}{17}=\frac{y}{2}\Rightarrow\frac{2x}{34}=\frac{y}{2}=\frac{2x-y}{34-2}=\frac{64}{32}=2\)
=> x = 34, y = 4
c/ \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)
=> x = -28 , y=-12
d,e,f,g,h tương tự.
i/ \(x:y=5:6\Rightarrow\frac{x}{5}=\frac{y}{6}\)
Làm tương tự các câu còn lại.
j/ Đặt \(\frac{x}{4}=\frac{y}{7}=k\) \(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)
xy = 112 => 4k.7k = 112 => \(k^2=4\Rightarrow k=\pm2\)
Nếu k = 2 thì x = 8, y = 14
Nếu k = -2 thì x = -8 , y = -14
k/ \(-2x=3y\Rightarrow\frac{x}{3}=\frac{y}{-2}\)
Làm tương tự câu j.
a)\(0,2:1\frac{1}{5}=\frac{2}{3}:\left(6.x+7\right)\)
\(\frac{2}{3}:\left(6.x+7\right)=0,2:1\frac{1}{5}\)
\(\frac{2}{3}:\left(6.x+7\right)=0,2:\frac{6}{5}\)
\(\frac{2}{3}:\left(6.x+7\right)=\frac{1}{6}\)
\(6.x+7=\frac{2}{3}:\frac{1}{6}\)
\(6.x+7=4\)
\(6.x=4-7\)
\(6.x=-3\)
\(x=-3:6\)
\(x=-0,5\)
Vậy x=-0,5 hay \(\frac{-1}{2}\)
d)\(\frac{x}{y}=\frac{2}{3};x.y=96\)
Từ \(\frac{x}{y}=\frac{2}{3}\)suy ra \(\frac{x}{3}=\frac{y}{2}\)
Đặt k=\(\frac{x}{3}=\frac{y}{2}\)
\(\Rightarrow x=3.k;y=2.k\)
Vì \(x.y=96\)nên \(2k.3k=96\)
\(\Rightarrow6.k^2=96\)
\(\Rightarrow k^2=96:6\)
\(\Rightarrow k^2=16\)
\(\Rightarrow k=4\)hoặc\(k=-4\)
+)Với \(k=4\)thì \(x=2\);\(y=3\)
+)Với \(k=-4\)thì \(x=-2\);\(y=-3\)
Vậy \(x=2;y=3\)hoặc \(x=-2;y=-3\)
e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(x.y.z=810\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
Vì \(x.y.z=810\)nên \(2k.3k.5k=810\)
\(\Rightarrow30.k^3=810\)
\(\Rightarrow k^3=810:30\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
Với \(k=3\)thì \(x=6\); \(y=9\); \(z=15\)
Vậy \(x=6\); \(y=9\); \(z=15\)
Mk chỉ làm đc vậy thui bn à! Xin lỗi thật nhiều nha
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}\)
\(=\frac{4}{1}+\frac{1}{2.\frac{1}{4}}=6\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Ta có \(\hept{\begin{cases}\left(x+y\right)^2=1\\\left(x-y\right)^2\ge0\end{cases}}\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
\(xy\le\frac{\left(x^2+^2\right)}{2}\)nên \(K=\frac{1}{x^2+y^2}+\frac{2}{xy}\ge\frac{1}{x^2+y^2}+\frac{2}{x^2+y^2}=\frac{3}{x^2+y^2}\ge\frac{3}{\frac{1}{2}}=6\)
\(K_{min}=6\)dấu "=" khi \(x=y=\frac{1}{2}\)