K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

1) 

a)Ta có:

S=1+2+22+.....+299

S=(1+2)+(22+23)+...+(298+299)

S=3+2(1+2)+...+298(1+2)

S=3+2.3+...+298.3

S=3(1+2+...+298)\(⋮\)3

Vậy S\(⋮\)3

b)Ta có:

S=1+2+22+.....+299

2S=2+22+23+...+2100

2S-S=(2+22+23+...+2100)-(1+2+22+.....+299)

S=2+22+23+...+2100-1-2-22-.....-299

S=2100-1

S+1=2100-1+1

S+1=2100

S+1=(22)50

S+1=450=4n+2

=>n+2=50

=>n=48

Vậy n=48

12 tháng 10 2017

 có  : ba số 7,6,2 có tổng là 15 mà 15chia hết cho 3 nhưng 0 chia hết cho 9 

 ta có các số : 762,726,276,267,627,672 

A={108 , 117 , 126, 135, 144}

2S=2+22+...........+28

=> S= 28-1

S= 255

Ta có ( 2+5+5=12 mà 12chia hết cho 3 

=> S chia hết cho 3

4 tháng 8 2016

2.

a) Ta có: \(\frac{n+6}{n}=\frac{n}{n}+\frac{6}{n}=1+\frac{6}{n}\)

Để n + 6 chia hết cho n thì \(\frac{6}{n}\) phải là số tự nhiên

\(\Rightarrow n\in\text{Ư}\left(6\right)=\left\{1;2;3;6\right\}\)

Vậy \(n\in\left\{1;2;3;6\right\}\)

c) Ta có: \(\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=\frac{n+1}{n+1}+\frac{3}{n+1}=1+\frac{3}{n+1}\)

Để n + 4 chia hết cho n + 1 thì \(\frac{3}{n+1}\) phải là số tự nhiên

\(\Rightarrow n+1\in\text{Ư}\left(3\right)=\left\{1;3\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

Vậy \(n\in\left\{0;2\right\}\)

11 tháng 12 2016

Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa

12 tháng 1 2019

ko biết

5 tháng 8 2017

mình biết mỗi bài 4:

A={2007}

mình đi xin bn đó

6 tháng 8 2017

cảm ơn bạn Xử Nữ các bạn khác giúp mình với

13 tháng 12 2018

a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)

    S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)

    S=129+2*3+2^3*(1+2)+2^5*(1+2)

    S=3*43+2*3+2^3*3+2^5*3

    S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3

     

26 tháng 12 2018

c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004

    S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]

    S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )

    S = 2*501

    S = 1002