Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 22016 - 22014 ) : 22012
= 22014 ( 4 - 1 ) : 22012
= 4 . 3
= 12
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
\(M=1+2+2^2+...+2^{2013}\)
\(\Rightarrow2M=2+2^2+2^3+...+2^{2014}\)
\(\Rightarrow2M-M=2^{2014}-1\)
\(\Leftrightarrow M=2^{2014}-1\)
A=2014/2013 B=2013/2012
A=1-2014/2013 B=1-2013/2012
A=-1/2013 B=-1/2012
=>-1/2013 > -1/2012
VẬY A=2014/2013>B=2013/2012
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2A=2+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{2012}}\)
\(=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
mà \(A=2A-A\)
=> \(A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(=2-\frac{1}{2^{2012}}\)
\(=\frac{2^{2013}}{2^{2012}}-\frac{1}{2^{2012}}\)
\(=\frac{2^{2013}-1}{2^{2012}}\)
Easy mà bạn! Mình giải trên máy tính trường nên hơi chậm
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2A=2+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2012^{2012}}\)
\(2A=2+1+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{2012}}\)
\(2A-A=A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
\(=2-\frac{1}{2^{2012}}=\frac{2^{2013}}{2^{2012}}-\frac{1}{2^{2012}}=\frac{2^{2012}.2-1}{2^{2012}}\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(\Rightarrow2A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2012}}\)
\(\Rightarrow A=1-\frac{1}{2^{2012}}\)
Chắc đề thế này!
\(S=1+2+2^2+2^3+2^4+...+2^{2014}\)
\(2S=2+2^2+2^3+2^4+...+2^{2015}\)
\(2S-S=\left(2+2^2+2^3+...+2^{2015}\right)-\left(1+2+2^2+...+2^{2014}\right)\)
\(\Rightarrow2S-S=S=2^{2015}-1< 2^{2015}\Rightarrow S< D\)