Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3a)
1+2+3+4+5+...+n=231
=> (1+n).n:2=231
(1+n).n=231.2
(1+n).n=462
(1+n).n=2.3.7.11
(1+n).n=(2.11).(3.7)
(1+n).n=22.21
=>n=21
gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1 nhớ kết bạn với mình nhé
a) n + 1 chia hết cho n - 3
=> n - 3+ 4 chia hết cho n - 3
=> 4 chia hết cho n-3
=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
thế n-3 vô từng trường hợp các ước của 4 rồi tim x
b) 2n + 5 chia hết cho n + 1
=> 2n + 2 + 3 chia hết cho n + 1
=> 2(n+1) + 3 chia hết cho n +1
=> 3 chia hết cho n + 1
=> n + 1 thuộc Ư(3) = {1;-1;3;-3}
tìm x giống bài a
c) 10n chia hết cho 5n - 3
=> 10n - 6 + 6 chia hết cho 5n - 3
=> 2.(5n - 3) + 6 chia hết cho 5n - 3
=> 6 chia hết cho 5n - 3
=> 5n - 3 thuộc Ư(6) = {1;-1;2;-2;3;-3;6;-6}
tìm x giống bài a
a. n+1=(n-3)+4
(n+1) chia hết cho (n-3) thì (n-3)+4 chia hết cho (n-3)
Ta có (n-3) chia hết cho (n-3)
Suy ra 4 phải chia hết cho (n-3)
Vậy n= -1 ,1 , 2 , 4
b. 2n+5=2n+2+3=2(n+1)+3
tương tự câu a ta có 2(n+1) chia hết cho (n+1)
Suy ra 3 phải chia hết cho (n+1)
Vậy n=-2,0,2
c.10n=10n-6+6=2(5n-3) +6
Tiếp tục àm tương tự như câu a và b
\(3n+2⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\in\left\{1,5,-1,-5\right\}\)
\(\Rightarrow n\in\left\{2,6,0,-4\right\}\)
\(2n-3⋮n+1\)
\(\Rightarrow2\left(n+1\right)-6⋮n+1\)
\(\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\in\left\{6,1,2,3,-1,-6,-2,-3\right\}\)
\(\Rightarrow n\in\left\{5,0,1,2,-2,-7,-3,-4\right\}\)
a; (n + 4) ⋮ (2n + 3)
2(n + 4) ⋮ (2n + 3)
(2n + 8) ⋮ (2n + 3)
(2n + 3 +5) ⋮ (2n + 3)
5 ⋮ (2n + 3)
(2n + 3) ϵ Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
2n +3 | -5 | -1 | 1 | 5 |
n | -4 | -2 | -1 | 1 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {-4; -2; -1; 1}
Vậy các giá trị nguyên cả n thỏa mãn đề bài lần lượt là:
n ϵ {-4; -2; -1; 1}
b; (2n + 4) ⋮ (3n -1)
3.(2n + 4) ⋮ (3n -1)
(6n + 12) ⋮ (3n - 1)
[2.(3n - 1) + 14] ⋮ (3n - 1)
14 ⋮ (3n - 1)
(3n - 1) ϵ Ư(14) = {-14; -7; -2; -1; 1; 2; 7; 14}
Lập bảng ta có:
3n - 1 | -14 | -7 | -2 | -1 | 1 | 2 | 7 | 14 |
n | - 13/3 | -2 | -1/3 | 0 | 2/3 | 1 | 8/3 | 5 |
n ϵ Z | ktm | tm | ktm | tm | ktm | tm | ktm | tm |
Theo bảng trên ta có: n ϵ {-2; 0; 1; 5}
Vậy các giá trị nguyên thỏa mãn đề bài là:
n ϵ {-2; 0; 1; 5}