Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) \(x.0,\left(2\right)+0,\left(3\right)=0,\left(77\right)\)
⇔ \(x.2.0,\left(1\right)+3.0,\left(1\right)=77.0,\left(01\right)\)
⇔ \(2x.\dfrac{1}{9}+3.\dfrac{1}{9}=77.\dfrac{1}{99}\)
⇔ \(2x.\dfrac{1}{9}+\dfrac{1}{3}=\dfrac{7}{9}\)
⇔ \(2x.\dfrac{1}{9}=\dfrac{7}{9}-\dfrac{1}{3}=\dfrac{4}{9}\)
⇔ \(2x=\dfrac{4}{9}:\dfrac{1}{9}=4\)
⇔ \(x=4:2=2\)
Vậy \(x=2\)
\(b,\) \(0,\left(153\right):0,\left(123\right)=1\dfrac{10}{41}.x\)
⇔ \(153.0,\left(001\right):\left[123.0,\left(001\right)\right]=\dfrac{51}{41}.x\)
⇔ \(153.\dfrac{1}{999}:\left(123.\dfrac{1}{999}\right)=\dfrac{51}{41}.x\)
⇔ \(\dfrac{17}{111}:\dfrac{41}{333}=\dfrac{51}{41}.x\)
⇔ \(\dfrac{51}{41}=\dfrac{51}{41}x\)
⇔ \(x=\dfrac{51}{41}:\dfrac{51}{41}=1\)
Vậy \(x=1\)
a)x.0,(2)+0,(3)=0,(77)
x.0,(2)=0,(77)-0,(3)
x.0,(2)=0,47
x=0,47:0,(2)
x=0,77
b) 0,(153):0,(123)=1/10/41.x
1,24390=1/10/41.x
x=1/10/41:1,24390
x=1
\(A=3\cdot\left(\dfrac{5}{9}+\dfrac{14}{99}\right):\left(\dfrac{8}{99}-\dfrac{4}{33}\right)\)
\(=3\cdot\dfrac{55+14}{99}:\dfrac{8-12}{99}\)
\(=3\cdot\dfrac{69}{-4}=\dfrac{-207}{4}\)
\(M=\left[0,\left(5\right).0,\left(2\right)\right]:\left(3\frac{1}{3}:\frac{33}{25}\right)-\left[0,4.1,\left(3\right)\right]:1,\left(3\right)=\left(\frac{5}{9}\cdot\frac{2}{9}\right):\left(\frac{10}{3}\cdot\frac{25}{33}\right)-\left(\frac{2}{5}\cdot\frac{4}{3}\right):\frac{4}{3}\)
=\(\frac{10}{81}:\frac{250}{99}-\frac{8}{15}\cdot\frac{3}{4}=\frac{10}{99}\cdot\frac{99}{250}-\frac{2}{5}=\frac{1}{25}-\frac{10}{25}=-\frac{9}{25}\)
Tìm x biết
\(\frac{0,1\left(6\right)+0,\left(3\right)}{0,\left(3\right)+1,1\left(6\right)}\)- x=0,(2)
\(\frac{0,1\left(6\right)+0,\left(3\right)}{0,\left(3\right)+1,1\left(6\right)}-x=0,\left(2\right)\)
\(\Rightarrow\frac{\frac{1}{6}+\frac{1}{3}}{\frac{1}{3}+\frac{7}{6}}-x=\frac{2}{9}\)
\(\Rightarrow\frac{\frac{1}{2}}{\frac{3}{2}}-x=\frac{2}{9}\)
\(\Rightarrow\frac{1}{3}-x=\frac{2}{9}\)
\(\Rightarrow x=\frac{1}{3}-\frac{2}{9}=\frac{1}{9}\)
Vậy \(x=\frac{1}{9}\)
Bài 1:
a) \(0,\left(3\right)+3\frac{1}{3}+0,\left(31\right)\)
\(=\frac{1}{3}+\frac{10}{3}+\frac{31}{99}\)
\(=\frac{11}{3}+\frac{31}{99}\)
\(=\frac{394}{99}.\)
b) \(\frac{4}{9}+1,2\left(31\right)-0,\left(13\right)\)
\(=\frac{4}{9}+\frac{1219}{990}-\frac{13}{99}\)
\(=\frac{553}{330}-\frac{13}{99}\)
\(=\frac{139}{90}.\)
Bài 2:
\(0,\left(37\right).x=1\)
\(\Rightarrow\frac{37}{99}.x=1\)
\(\Rightarrow x=1:\frac{37}{99}\)
\(\Rightarrow x=\frac{99}{37}\)
Vậy \(x=\frac{99}{37}.\)
Chúc bạn học tốt!
Phương Nguyễn Mai Bạn thử xem ở đây nhé:
Lý thuyết số thập phân hữu hạn. số thập phân vô hạn tuần ...
\(\left[\frac{7}{11}+\frac{4}{11}\right]:\left[\frac{1}{3}.3+\frac{77}{333}:\frac{77}{333}\right]\)
= 1 : [ 1 + 1 ]
= 1 : 2
= \(\frac{1}{2}\)
\(\left[0,\left(63\right)+0,\left(36\right)\right]:\left[0,\left(3\right)+0,\left(231\right):\frac{77}{333}\right]\)
\(=\left[\frac{63}{99}+\frac{36}{99}\right]:\left[\frac{3}{9}.3+\frac{231}{999}\cdot\frac{333}{77}\right]\)
\(=1:\left[1+1\right]=\frac{1}{2}\)