K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

=3 nha bn

3 tháng 3 2019

đáp án 3

1 hàm số y = ax^4+bc^2+c(a#0) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng a . a>0,b<0 ,c \(\le\) 0 B a<0,b,0,c<0 C a>0,b\(\ge\) 0,c>0 D a>0,b\(\ge\)0,c,0 2 đồ thị nào dưới đây có tiệm cận ngang là đường thẳng y=1 A y=1 B y=\(\frac{1-x}{2-x}\) C y= \(\frac{x-1}{x^2+1}\) D y=\(\frac{1}{x-1}\) 3 tìm một nguên hàm F(x) của hàm số f(x)...
Đọc tiếp

1 hàm số y = ax^4+bc^2+c(a#0) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng

a . a>0,b<0 ,c \(\le\) 0 B a<0,b,0,c<0 C a>0,b\(\ge\) 0,c>0 D a>0,b\(\ge\)0,c,0

2 đồ thị nào dưới đây có tiệm cận ngang là đường thẳng y=1

A y=1 B y=\(\frac{1-x}{2-x}\) C y= \(\frac{x-1}{x^2+1}\) D y=\(\frac{1}{x-1}\)

3 tìm một nguên hàm F(x) của hàm số f(x) =\(\frac{x^2-1}{x^2}\) biết F(1)=0

4 cho lăng trụ đứng ABCD .\(A^,B^,C^,D^,\) có ABCD là hình hoi cạnh 2a, ABD=\(60^0\) , \(A^,B^,BA\) là hình vuông . Tính thể tích lăng trụ ABCD.\(A^,B^,C^,D^,\)

5Tính diện tích toàn phẩn của hình trụ có thiết diện qua trục là hình vuông cạnh 2a

6 Tìm số thực x,y thỏa (x+y)+(2x-y)i=3-6i

7 trong ko gian Oxyz, cho điểm I(1;2;4) và mặt phẳng (P) :2x+2y+z-1=0 . Mặt cầu tâm I và tiếp xúc với mp (P) có phuong trình là

8 tìm số gaio điểm của đồ thị hàm số y=x^4-3x^2-5 và trục hoành

A 2 B. 3 C. 1 D.4

9 Đặt t =5^x hì bất phương trình \(5^{2x}-3.5^{x+2}+32< 0\) trở thành bất pt nào

A \(t^2-75t+32< 0\) B \(t^2-6t+32< 0\) C \(T^2-3t+32< 0\) D \(t^2-16t+32< 0\)

10 trong ko gian oxyz, cho điểm A(1;-1;3),B(-3;0;-4) .Phương trình nào sau đây là pt chính tắc của đường thẳng qua A vÀ B

A \(\frac{X+3}{4}=\frac{Y}{-1}=\frac{Z-4}{3}\) B\(\frac{X+3}{1}=\frac{Y}{-1}=\frac{Z+4}{3}\) C\(\frac{X+3}{4}=\frac{Y+1}{-1}=\frac{Z+4}{7}\) D \(\frac{X+3}{-4}=\frac{Y-1}{-1}=\frac{Y+3}{7}\)

11 trong ko gian Oxyz , cho 2 vecto \(\overline{a}\left(1,m,-1\right)\),\(\overline{b}\left(2;1;3\right)\). tìm m để \(\overline{a}\perp\overline{b}\)

3
NV
14 tháng 6 2020

9.

\(5^{2x}-3.5^{x+2}+32< 0\)

\(\Leftrightarrow\left(5^x\right)^2-75.5^x+32=0\)

Đặt \(5^x=t\Rightarrow t^2-75t+32< 0\)

10.

\(\overrightarrow{BA}=\left(4;-1;7\right)\Rightarrow\) đường thẳng AB nhận \(\left(4;-1;7\right)\) là 1 vtcp

Đáp án C là đáp án duy nhất đúng về vtcp, nhưng lại sai về điểm mà đường thẳng đi qua, nên cả 4 đáp án đều sai :)

Pt chính tắc đúng phải là: \(\frac{x+3}{4}=\frac{y}{-1}=\frac{z+4}{7}\)

11.

\(\overrightarrow{a}\perp\overrightarrow{b}\Leftrightarrow\overrightarrow{a}.\overrightarrow{b}=0\)

\(\Leftrightarrow2+m-3=0\Rightarrow m=1\)

NV
14 tháng 6 2020

5.

\(R=a;h=2a\)

\(\Rightarrow S=2\pi R.h=4\pi a^2\)

6.

\(\left(x+y\right)+\left(2x-y\right)i=3-6i\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)

7.

\(R=d\left(I;\left(P\right)\right)=\frac{\left|2.1+2.2+4-1\right|}{\sqrt{2^2+2^2+1^2}}=3\)

Pt mặt cầu: \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-4\right)^2=9\)

8.

\(x^4-3x^2-5=0\)

Đặt \(x^2=t\ge0\Leftrightarrow t^2-3t-5=0\) (1)

\(t_1t_2=-5< 0\Rightarrow\left(1\right)\) có 2 nghiệm trái dấu => có đúng 1 nghiệm dương => pt đã cho có 2 nghiệm pb

\(\Rightarrow\) Đồ thị hs cắt trục hoành tại 2 điểm

8 tháng 4 2016

Gọi a là số tấn gạo ngày thứ ba bán được

Số tấn gạo ngày thứ hai bán được: \(1,5+0,5=2\) (tấn)

Ngày thứ ba bán được nhiều hơn mức trung bình cả ba ngày 0,1 tấn nên:   \(a-\frac{(1,5+2+a)}{3}=0,1\)    <=> \(3a-(3,5+a)=0,3\)

                                     <=>\(3a-a=0,3+3,5\)

                                     <=> \(2a=3,8\)

                                     <=> \(a=1,9\)

Vậy ngày thứ ba bán được 1,9 tấn gạo

 

30 tháng 3 2016

Vì \(2,5=\frac{1}{0,4}=0,4^{-1}\) nên bất phương trình có thể viết thành

\(0,4^x-2,5.0,4^{-x}-1,5>0\)

Đặt \(t=0,4^x\left(t>0\right)\), ta có bất phương trình đại số :

\(t^2-1,5t-2,5>0\Leftrightarrow\begin{cases}t<-1\\t>2,5\end{cases}\)

Khi đó \(0,4^x>2,5\) hay \(0,4^x>0,4^{-1}\) do đó \(x<-1\) là nghiệm của bất phương trình

24 tháng 5 2023

a. Vì \(0< 0,1< 1\) nên bất phương trình đã cho 

\(\Leftrightarrow0< x^2+x-2< x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-2>0\\x^2-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\\-\sqrt{5}< x< \sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{5}< x< -2\\1< x< \sqrt{5}\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là \(S=\left\{-\sqrt{5};-2\right\}\) và \(\left\{1;\sqrt{5}\right\}\)

b. Điều kiện \(\left\{{}\begin{matrix}2-x>0\\x^2-6x+5>0\end{matrix}\right.\)

Ta có:

 \(log_{\dfrac{1}{3}}\left(x^2-6x+5\right)+2log^3\left(2-x\right)\ge0\)

\(\Leftrightarrow log_{\dfrac{1}{3}}\left(x^2-6x+5\right)\ge log_{\dfrac{1}{3}}\left(2-x\right)^2\)

\(\Leftrightarrow x^2-6x+5\le\left(2-x\right)^2\)

\(\Leftrightarrow2x-1\ge0\)

Bất phương trình tương đương với:

\(\left\{{}\begin{matrix}x^2-6x+5>0\\2-x>0\\2x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>5\end{matrix}\right.\\x< 2\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le x< 1\)

Vậy tập nghiệm của bất phương trình là: \(\left(\dfrac{1}{2};1\right)\)

24 tháng 8 2016

\(f'\left(x\right)=\frac{\frac{\sqrt{x+1}}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x+1}}}{x+1}=\frac{1}{\sqrt{x}\left(\sqrt{x+1}\right)^3}>0;\forall x\in\left(0;4\right)\)

Mà f(x) liên tục trên [0;4] nên hàm số đồng biến trên [0;4]

\(\Rightarrow Maxf\left(x\right)_{\left[0;4\right]}=f\left(4\right)\)

YCBT \(\Leftrightarrow\begin{cases}m>1\\f\left(4\right)\le3\end{cases}\)  \(\Leftrightarrow\begin{cases}m>1\\\frac{4+m}{\sqrt{5}}\le3\end{cases}\)\(\Leftrightarrow1< m< 3\sqrt{5}-4\)

AH
Akai Haruma
Giáo viên
31 tháng 5 2019

Lời giải:

\(f'(x)=f'(x-1); dx=d(x-1)\)

\(\Rightarrow f'(x)dx=f'(x-1)d(x-1)\)

\(\Rightarrow \int f'(x)dx=\int f'(x-1)d(x-1)\)

\(\Rightarrow f(x)=f(x-1)+c\)

Thay $x=1$ ta có \(f(1)=f(0)+c\Leftrightarrow 2019=1+c\Rightarrow c=2018\)

Khi đó: $f(x)=f(x-1)+2018$

\(f(0)=1=1+2018.0\)

\(f(1)=1+2018.1\)

\(f(2)=f(1)+2018=1+2018.1+2018=1+2018.2\)

.........

\(\Rightarrow f(x)=1+2018.x\)

Do đó: \(\int ^{1}_{0}f(x)dx=\int ^{1}_{0}(2018x+1)dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|(1009x^2+x)=1010\)

NV
3 tháng 6 2019

Lấy tích phân 2 vế giả thiết:

\(\int\limits^1_0\left(f'\left(x\right)\right)^2dx+4\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\left(8x^2+4\right)dx=\frac{20}{3}\)

Xét \(I=\int\limits^1_0f\left(x\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=x\end{matrix}\right.\)

\(\Rightarrow I=x.f\left(x\right)|^1_0-\int\limits^1_0x.f'\left(x\right)dx=2-\int\limits^1_0x.f'\left(x\right)dx\)

\(\Rightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx+8-4\int\limits^1_0x.f'\left(x\right)dx=\frac{20}{3}\)

\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx-2\int\limits^1_02x.f'\left(x\right)dx+\int\limits^1_04x^2dx=\frac{20}{3}-8+\int\limits^1_04x^2dx=0\)

\(\Leftrightarrow\int\limits^1_0\left[\left[f'\left(x\right)\right]^2-2.2x.f'\left(x\right)+4x^2\right]dx=0\)

\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)-2x\right]^2dx=0\Rightarrow f'\left(x\right)=2x\)

\(\Rightarrow f\left(x\right)=x^2+C\)

Do \(f\left(1\right)=2\Rightarrow2=1+C\Rightarrow C=1\)

\(\Rightarrow f\left(x\right)=x^2+1\Rightarrow\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\left(x^2+1\right)dx=\frac{4}{3}\)

4 tháng 6 2019

dap an bai kia la gi vay ban

10 tháng 5 2016

\(C=\left(0,5\right)^{-4}-625^{0,25}-\left(2\frac{1}{4}\right)^{-1\frac{1}{2}}+19\left(-3\right)^{-3}=\left(2^{-1}\right)^{-4}-\left(5^4\right)^{\frac{1}{4}}-\left[\left(\frac{3}{2}\right)^2\right]^{-\frac{3}{2}}+19.\frac{1}{\left(-3\right)^3}\)

                                                                                  \(=2^4-5-\left(\frac{3}{2}\right)^{-3}-\frac{19}{27}\)

                                                                                  \(=11-\left(\frac{2}{3}\right)^3-\frac{19}{27}=10\)

 

10 tháng 5 2016

\(C=\left(0,5\right)^{-4}-625^{0,25}-\left(2\frac{1}{4}\right)^{-1\frac{1}{2}}+19.\left(-3\right)^{-3}\)

\(=\left(\frac{1}{2}\right)^{-4}-625^{\frac{1}{4}}-\left(\frac{9}{4}\right)^{-\frac{3}{2}}+19.\left(-3\right)^{-3}\)

\(=2^4-\sqrt[4]{625}-\left(\frac{4}{9}\right)^{\frac{3}{2}}+19.\left(\frac{1}{\left(-3\right)^3}\right)\)

=\(16-5-\sqrt[2]{\left(\frac{4}{9}\right)^3}+19.\frac{1}{-27}=11-\frac{8}{27}-\frac{19}{27}=10\)