K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2022

a, (d) đi qua I(1;3) 

<=> 3 = 2(m-1) + m^2 + 2m

\(\Leftrightarrow m^2+4m-2=3\Leftrightarrow m^2+4m-5=0\)

\(\Leftrightarrow\left(m-1\right)\left(m+5\right)=0\Leftrightarrow m=1;m=-5\)

a: Thay x=1 và y=3 vào (d),ta được:

2(m-1)+m2+2m=3

\(\Leftrightarrow m^2+4m-2-3=0\)

=>(m+5)(m-1)=0

=>m=-5 hoặc m=1

18 tháng 2 2020

Sửa đề (d) y=2(m-1)x+m^2+2m

a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)

Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)

=>\(3=2\left(m-1\right).1+m^2+2m\)

<=>\(m^2+2m+2m-2-3=0\)

<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)

b, Phương trình hoành độ giao điểm của (P) và (d) :

\(x^2=2\left(m-1\right)x+m^2+2m\) 

<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)

Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B

c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)

\(x_1^2+x_2^2+6x_1x_2>2017\)

<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)

<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)

<=>\(4m^2-8m+4-4m^2-8m-2017>0\)

<=>\(-16m-2013>0\)

<=>\(m< \frac{-2013}{16}\)

26 tháng 3 2022

a, (d) đi qua A(1;5) hay A(1;5) thuộc (d)

<=> \(5=4m-3\Leftrightarrow m=2\)

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2mx-2m+3=0\)

\(\Delta'=m^2-\left(-2m+3\right)=m^2+2m-3\)

Để (P) tiếp xúc (d) thì pt có nghiệm kép khi 

\(m^2+2m-3=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-3\end{cases}}\)

20 tháng 4 2019

De (P),(d),\(\left(\Delta\right)\),cung giao nhau tai mot diem co hoanh do lon hon mot thi x>1

Hoanh do giao diem la nghiem cua phuong trinh:

x2=x+2 \(\Leftrightarrow\)x2-x-2=0

\(\Delta\)=9

x1=2(tm)

x2=-1(loai)

thay x=2 vao y=xta co:    y=(2)2=4

thay x=2,y=4 vao \(\left(\Delta\right):y=\left(2m-3\right)x-1\)

4=(2m-3)2  -1

\(\Leftrightarrow4=4m-7\)

\(\Leftrightarrow m=\frac{11}{4}\)

vay m=11/4 thi (P),(d),\(\left(\Delta\right)\)cung giao nhau tai mot diem co hoanh do >1

11 tháng 10 2017

a) Để đường thẳng d: (2m-1)x+(m-2)y=m2-3 đi qua gốc tọa độ thì x=y=0

\(\Rightarrow m^2-3=0\Leftrightarrow\left(m-\sqrt{3}\right)\left(m+\sqrt{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m-\sqrt{3}=0\\m+\sqrt{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{3}\\m=-\sqrt{3}\end{matrix}\right.\)

Vậy khi \(m=\left\{-\sqrt{3};\sqrt{3}\right\}\) thì d đi qua gốc tọa độ.

b) Để đường thẳng d: (2m-1)x+(m-2)y=m2-3 đi qua điểm A thì x=3, y=5.

\(\Rightarrow3\left(2m-1\right)+5\left(m-2\right)=m^2-3\)

\(\Leftrightarrow-m^2+11m-10=0\)

\(\Leftrightarrow m\left(1-m\right)-10\left(1-m\right)=0\)

\(\Leftrightarrow\left(1-m\right)\left(m-10\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}1-m=0\\m-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=10\end{matrix}\right.\)

Vậy khi \(m=\left\{1;10\right\}\) thì d đi qua gốc tọa độ.

17 tháng 6 2018

có y=-x^2 =>(x1-x2)^2+(x2^2-x1^2)^2 =25

ok rồi sau đó tựbiến đổi nhé . mình lười lắm :))))

1 tháng 7 2020

b) Đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt 

\(\Leftrightarrow x^2+2x-m+1=0\)có 2 nghiệm phận biệt \(\Leftrightarrow\Delta'=m>0\)

theo đinh lý ziet : \(x_1+x_2=-2,x_1x_2=-m+1\)

có \(y_1=2x_1-m+1,y_2=2x^2-m+1=>y_1-y_2=2\left(x_1-x_2\right)\)

Nên : \(25=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=5\left(x_1-x_2\right)^2=>\left(x_1-x_2\right)=5\)

hay \(\left(x_1+x_2\right)^2-4x_1x_2=5=>4-4\left(-m+1\right)=5=>m=\frac{5}{4}\left(TM\right)\)

10 tháng 4 2022

a) Thay A(1; -9) vào (d), ta có:

-9 = 3m + 1 - m2

<=> -9 - 3m - 1 + m2 = 0

<=> -10 - 3m + m2 = 0

<=> m = 5 hoặc m = -2

b) Lập phương trình hoành độ giao điểm:

x2 = 3mx + 1 - m2

<=> x2 - 3mx - 1 + m2 = 0

Để (d) cắt (P) tại hai điểm phân biệt <=> \(\Delta>0\)

<=> (-3m)2 - 4.1.(-1 + m2) = 0

<=> 9m2 + 4 - 4m2 > 0

<=> 5m2 + 4 > 0\(\forall m\)

Ta có: x1 + x2 = 2x1x2 

Theo viet ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=3m\\x_1x_2=\frac{c}{a}=-1+m^2\end{cases}}\)

<=> 3m = 2(-1 + m2)

<=> 3m = -2 + m2 

<=> 3m + 2 - m2 = 0

<=> \(x_{1;2}=\frac{3\pm\sqrt{17}}{2}\)