Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)-43=0\)
Đặt \(x^2-4x=t\)
\(t^2+2\left(t+4\right)-43=0\)
\(\Leftrightarrow t^2+2t-35=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4x=5\\x^2-4x=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4x-5=0\\x^2-4x+7=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
Ta có: \(\left(x^2-4x\right)^2+2\left(x-2\right)^2=43\)
\(\Leftrightarrow\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)=43\)
Đặt \(a=x^2-4x\), ta được
\(a^2+2\left(a+4\right)=43\)
\(\Leftrightarrow a^2+2a+8-43=0\)
\(\Leftrightarrow a^2+2a-35=0\)
\(\Leftrightarrow a^2+7a-5a-35=0\)
\(\Leftrightarrow a\left(a+7\right)-5\left(a+7\right)=0\)
\(\Leftrightarrow\left(a+7\right)\left(a-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+7=0\\a-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-7\\a=5\end{matrix}\right.\)
Xét a=5, ta được
\(x^2-4x=5\)
\(\Leftrightarrow x^2-4x-5=0\)
\(\Leftrightarrow x^2+x-5x-5=0\)
\(\Leftrightarrow x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
Xét a=-7, ta được
\(x^2-4x=-7\)
Ta có: \(x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)
Ta lại có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+3\ge3>0\forall x\)
⇒Loại
Vậy: x∈{-1;5}
(x2 - 4x)2 + 2(x - 2)2 = 43
<=> x2(x - 4)2 + 2(x - 2)2 = 43
<=> x4 - 8x3 + 16x2 + 2x2 - 8x + 8 = 43
<=> x4 - 8x3 + 18x2 - 8x + 8 - 43 = 0
<=> x4 - 8x3 + 18x2 - 8x - 35 = 0
<=> (x3 - 9x2 + 27x - 35)(x + 1) = 0
<=> (x2 - 4x + 7)(x - 5)(x + 1) = 0
vì x2 - 4x + 7 khác 0 nên:
<=> x - 5 = 0 hoặc x + 1 = 5
<=> x = 5 hoặc x = -1
\(\left(x^2-4x\right)^2+2\left(x-2\right)^2=43\)
\(\left[x\left(x-4\right)^2\right]+2\left(x-2\right)^2=43\)
\(x^2\left(x-4\right)^2+2\left(x-2\right)^2=43\)
\(x^4-8x^3+16x^2+2x^2-8x+8=43\)
\(x^4-8x^3+18x^2-8x+8-43=0\)
\(\left(x^3-9x^2+27x-35\right)\left(x+1\right)=0\)
\(x=5;-1\)
a/ Đặt \(x-3=t\)
\(\left(t+1\right)^4+\left(t-1\right)^4-82=0\)
\(\Leftrightarrow2t^4+12t^2-80=0\)
\(\Leftrightarrow t^4+6t^2-40=0\Rightarrow\left[{}\begin{matrix}t^2=4\\t^2=-10\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=2\\t=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
b/ \(\Leftrightarrow\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)-43=0\)
Đặt \(x^2-4x=t\)
\(t^2+2\left(t+4\right)-43=0\)
\(\Leftrightarrow t^2+2t-35=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4x-5=0\\x^2-4x+7=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
x^4-8x^3+16x^2+2x^2-4x+8=43
x^4-8x^3+18x^2-4x-35=0
phân tích đến đây sau đó đưa ra thnahf tihs
đặt (x-2)^2 =t=> t>=0< => x^2 -4x =t-4
<=>[t -4)^2 +2t =43
đặt t-4 =y => y>=-4
<=> y^2 +2y =35
đặt y+1 =z => z>=-3
<=> z^2=36 => z=6 => y=5 =>t=9 =>|x-2| =3 => x=(-1;5)
\(\left(x^2-4x\right)^2+2\left(x-2\right)^2=43\)
\(\Leftrightarrow x^4-8x^3+16x^2+2x^2-8x+8-43=0\)
\(\Leftrightarrow x^4-8x^3+18x^2-8x-35=0\)
\(\Leftrightarrow x^4+x^3-9x^3-9x^2+27x^2+27x-35x-35=0\)
\(\Leftrightarrow x^3\left(x+1\right)-9x^2\left(x+1\right)+27x\left(x+1\right)-35\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-9x^2+27x-35\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-5x^2-4x^2+20x+7x-35\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-5\right)-4x\left(x-5\right)+7\left(x-5\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)\left(x^2-4x+7\right)=0\)
Vì \(x^2-4x+7< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}}\)
Vậy....
\(a\)) (y - 4,5)⁴ + (y - 5,5)⁴ - 1 = 0
⇔ [(y - 4,5)⁴ - 2(y - 4,5)²(y - 5,5)² + (y - 5,5)⁴] + 2(y - 4,5)²(y - 5,5)² - 1 = 0
⇔ [(y - 4,5)² - (y - 5,5)²]² + 2[(y - 5)² - 0,25]² - 1 = 0
⇔ (2y - 10)² + 2[(y - 5)⁴ - 0,5(y - 5)² + 0,0625] - 1 = 0
⇔ 4(y - 5)² + [2(y - 5)⁴ - (y - 5)² + 0,125] - 1 = 0
⇔ 2(y - 5)⁴ + 3(y - 5)² - 0,875 = 0
⇔ 16(y - 5)⁴ + 24(y - 5)² - 7 = 0
⇔ [16(y - 5)⁴ - 4(y - 5)²] + [28(y - 5)² - 7] = 0
⇔ 4(y - 5)²[4(y - 5)² - 1] + 7[4(y - 5)² - 1] = 0
⇔ [4(y - 5)² - 1][4(y - 5)² + 7] = 0
⇔ 4(y - 5)² - 1 = 0 (vì 4(y - 5)² + 7 > 0 ∀y ∈ R)
⇔ 4(y - 5)² = 1 ⇔ (y - 5)² = 0,25 ⇔ y - 5 = ± 0,5.
y - 5 = 0,5 ⇔ y = 5,5.
y - 5 = - 0,5 ⇔ y = 4,5.
Vậy phương trình đã cho có tập nghiệm S = {5,5; 4,5}.
\(\left(x^2-4x\right)^2+2\left(x-2\right)^2=43\)
\(\Leftrightarrow\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)=43\)
Đặt \(x^2-4x=t\) ta có:
\(t^2+2\left(t+4\right)=43\)\(\Leftrightarrow t^2+2t-35=0\)
\(\Leftrightarrow\left(t-5\right)\left(t+7\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}t=5\\t=-7\end{matrix}\right.\)
*)Xét \(t=5\Leftrightarrow x^2-4x=5\)
\(\Leftrightarrow\left(x+1\right)\left(x-5\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
*)Xét \(t=-7\Leftrightarrow x^2-4x=-7\)
\(\Leftrightarrow\left(x-2\right)^2+3>0\forall x\) (Loại)