K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

Ta có : p2−1=(p−1)(p+1)p^2-1=\left(p-1\right)\left(p+1\right)p​2​​−1=(p−1)(p+1)
Vì p là số nguyên tố, p > 3 nên p không chia hết cho 3
Xét tích ba số nguyên liên tiếp : (p-1).p.(p+1) . Số này chia hết cho 3 vì một trong ba số ắt tìm được một số chia hết cho 3. Mà p không chia hết cho 3
=> (p-1)(p+1) = p2-1 chia hết cho 3 (1)
Ta chứng minh bài toán phụ : Với mọi số nguyên tố lớn hơn 3 đều viết được dưới dạng 6m+16m+16m+1 hoặc 6m−16m-16m−1
Thật vậy , mọi số nguyên đều viết được dưới dạng 6m±1,6m±2,6m±36m\pm1,6m\pm2,6m\pm36m±1,6m±2,6m±3
Mọi số nguyên tố lớn hơn 3 thì không chia hết cho 2 và 3 nên chúng chỉ có dạng 6m±16m\pm16m±1
Xét với số nguyên tố $p=6m\pm1\Rightarrow p^2-1=36m^2\pm12m=12m\left(3m\pm1\right)⋮8$ (2)
Từ (1) và (2) suy ra p chia hết cho 3 và 8 , mà (3,8) = 1
=> p chia hết cho 24

16 tháng 4 2017

Ta có : p2−1=(p−1)(p+1)p^2-1=\left(p-1\right)\left(p+1\right)p21=(p1)(p+1)
Vì p là số nguyên tố, p > 3 nên p không chia hết cho 3
Xét tích ba số nguyên liên tiếp : (p-1).p.(p+1) . Số này chia hết cho 3 vì một trong ba số ắt tìm được một số chia hết cho 3. Mà p không chia hết cho 3
=> (p-1)(p+1) = p2-1 chia hết cho 3 (1)
Ta chứng minh bài toán phụ : Với mọi số nguyên tố lớn hơn 3 đều viết được dưới dạng 6m+16m+16m+1 hoặc 6m−16m-16m1
Thật vậy , mọi số nguyên đều viết được dưới dạng 6m±1,6m±2,6m±36m\pm1,6m\pm2,6m\pm36m±1,6m±2,6m±3
Mọi số nguyên tố lớn hơn 3 thì không chia hết cho 2 và 3 nên chúng chỉ có dạng 6m±16m\pm16m±1
Xét với số nguyên tố $p=6m\pm1\Rightarrow p^2-1=36m^2\pm12m=12m\left(3m\pm1\right)⋮8$ (2)
Từ (1) và (2) suy ra p chia hết cho 3 và 8 , mà (3,8) = 1
=> p chia hết cho 24

11 tháng 8 2018

p ko chia hét cho 3 nên p chia 3 dư 1 =>p^2-1 chia hết cho 3

p^2 chia 8 dư 0,1,4.Nhưng p nguyên tố nên p^2 chia 8 dư 1 =>p^2-1 chia hết cho 8

mà (3;8)=1 nên ta cố dpcm

17 tháng 7 2017

2/ Ta chú ý cái này:

\(10^{100}=999...999+1=9.111...111+1\)

\(222...222=2.111...111\)

Ta đặt \(111...111=n\)

\(\Rightarrow111...111222...222=111...111.10^{100}+222...222\)

\(=111...111.\left(9.111...111+1\right)+2.111...111\)

\(=n\left(9n+1\right)+2n=9n^2+3n=3n\left(3n+1\right)\)

Vậy \(111...111222...222\)là tích của 2 số tự nhiên liến tiếp

17 tháng 7 2017

1/ Ta có: \(p^2-1=\left(p-1\right)\left(p+1\right)\)

Vì p là số nguyên tố lớn hơn 3 nên 

\(\left(p-1\right)\left(p+1\right)\) là tích của 2 số chẵn liên tiếp

\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮8\left(1\right)\)

Vì p nguyên tố lớn hơn 3 nên p có 2 dạng là: \(\orbr{\begin{cases}3k+1\\3k+2\end{cases}}\)

Với \(p=3k+1\)

\(\Rightarrow p^2-1=\left(3k+1\right)^2-1=9k^2+6k=3k\left(3k+2\right)⋮3\)

Với \(p=3k+1\)

\(\Rightarrow p^2-1=\left(3k+2\right)^2-1=9k^2+12k+3=3\left(3k^2+4k+1\right)⋮3\)

\(\Rightarrow p^2-1⋮3\left(2\right)\)

Vì 3 và 8 nguyên tố cùng nhau nên từ (1) và (2)

\(\Rightarrow p^2-1⋮\left(3.8=24\right)\)

24 tháng 6 2017

p là số nguyên tố p>3 nên p có dạng 3k+1 hoặc 3k-1.

Với p=3k+1 ta có;

\(p^2-1=\left(3k+1\right)^2-1=9k^2+6k+1-1=9k^2+6k=3k\left(3k+2\right)\)

Với p=3k-1 ta có

\(p^2-1=\left(3k11\right)^2-1=9k^2-6k+1-1=9k^2-6k=3k\left(3k-2\right)\)

24 tháng 6 2017

.p nguyên tố > 3  <=> p\(⋮\)3\(\Rightarrow\)p2 - 1\(⋮\)3

.p ngt lẻ chia 8 dư 1 \(\Rightarrow\)p2 - 1\(⋮\)8

Vì 8, 3 nguyên tố cùng nhau nên p2 -1 \(⋮\)24

10 tháng 11 2018

vì n là số nguyên tố ,n>3 nên n có dạng: 3k+1 hoặc 3k+2

với n=3k+1 thì

\(\left(n-1\right)\left(n+1\right)=\)\(\left(3k +1-1\right)\left(3k+1+1\right)=\)\(3k\left(3k+2\right)⋮3\)(1)

với n=3k+2 thì

\(\left(n-1\right)\left(n+1\right)=\)\(\left(3k+2+1\right)\left(3k+2-1\right)=\)\(\left(3k+3\right)\left(3k+1\right)=\)\(3\left(k+1\right)\left(3k+1\right)⋮3\)(2)

vì n là số nguyên tố lớn hơn 3 nên n là số lẻ nên n có dạng 2m+1

n=2m+1 thì

\(\left(n+1\right)\left(n-1\right)=\left(2m+1+1\right)\left(2m+1-1\right)\)\(=\left(2m+2\right)2m=2.2m\left(m+1\right)\)\(4m\left(m+1\right)⋮8\)(vì m(m+1) là hai sô tự nhiên liên tiếp nên tồn tại một số chia hết cho 2 nhân 4 nữa là chia hết cho 8)      (3)

mà (8,3)=1

từ (1),(2),(3) được đpcm

15 tháng 11 2018

vì n>3 nên n có dạng n=3k+1 hoặc n=3k+2
với n=3k+1 thì (n+1)(n-1)=(3k+2)3k chia hết cho 3
với n=3k+2 thì (n+1)(n-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố n>3 thì (n+1)(n-1) chia hết cho 3 (1)
mặt khác vì n>3 nên n là số lẻ =>n+1; n-1 là 2 số chẵn liên tiếp
=>trong hai số n+1; n-1 tồn tại một số là bội của 4
=> (n+1)(n-1) chia hết cho 8 (2)
từ (1) và (2) => (n+1)(n-1) chia hết cho 24 với mọi số nguyên tố n>3

25 tháng 7 2018

p^2 - 1 = (p-1)(p+1)

Do là snt => p ko chia hết 2 => p-1,p+1 là 2 số chia hết 2 liên tiếp => 1 số chia hết 2, 1 số chia hết 4

=> p^2 - 1 chia hết 8

Cũng do là snt => p không chia hết 3 nên trong 3 số liên tiếp p-1,p,p+1 có p-1 hoặc p+1 chia hết 3

Mà (3,8) = 1 nên p^2 - 1 chia hết 3.8=24

12 tháng 3 2018

Bạn xem lời giải chi tiết ở đường link dưới nhé:

Câu hỏi của Bùi Nguyễn Việt Anh - Toán lớp 6 - Học toán với OnlineMath

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)