Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge0;x\ne1\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3x+5\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3x+3\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\left(-3\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-3\sqrt{x}+2}{\sqrt{x}+3}\)
Để A nguyên thì \(\frac{-3\sqrt{x}+2}{\sqrt{x}+3}\in z\)
\(\frac{-3\sqrt{x}+2}{\sqrt{x}+3}=\frac{-3\sqrt{x}-9+11}{\sqrt{x}+3}=-3+\frac{11}{\sqrt{x}+3}\)
\(\Rightarrow\sqrt{x}+3\inƯ\left(11\right)=\left(-11;-1;1;11\right)\)
* \(\sqrt{x}+3=-11\Rightarrow\sqrt{x}=-14VN\)
* \(\sqrt{x}+3=-1\Rightarrow\sqrt{x}=-4VN\)
*\(\sqrt{x}+3=1\Rightarrow\sqrt{x}=-2VN\)
*\(\sqrt{x}+3=11\Rightarrow\sqrt{x}=8\Rightarrow x=64\)
\(x^2-1+\sqrt{143}=a\Leftrightarrow x^2-1=a-\sqrt{143}\)
\(\frac{1}{x^2-1}-\sqrt{143}=\frac{1}{a-\sqrt{143}}-\sqrt{143}=\frac{a+\sqrt{143}}{a^2-143}-\sqrt{143}\)
\(=\frac{a}{a^2-143}+\frac{\sqrt{143}}{a^2-143}-\sqrt{143}\)
Để \(\frac{1}{x^2-1}-\sqrt{143}\)là số nguyên thì \(\frac{\sqrt{143}}{a^2-143}-\sqrt{143}\)hữu tỉ suy ra \(\frac{1}{a^2-143}-1=0\Leftrightarrow a=\pm12\).
Từ đây suy ra giá trị của \(x\).
a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(A=\frac{4}{\sqrt{x}+2}\)
b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)
=> 2cawn x + 4 = 12
=> 2.căn x = 8
=> căn x = 4
=> x = 16 (thỏa mãn)
c, có A = 4/ căn x + 2 và B = 1/căn x - 2
=> A.B = 4/x - 4
mà AB nguyên
=> 4 ⋮ x - 4
=> x - 4 thuộc Ư(4)
=> x - 4 thuộc {-1;1;-2;2;-4;4}
=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4
=> x thuộc {3;5;2;6;8}
d, giống c thôi