Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 1009 có 8 chữ số tận cùng là 009 chia 8 dư 1 => 1009 chia 8 dư 1, mũ lên bao nhiêu vẫn chia 8 dư 1
=> 10091997 chia 8 dư 1, mà 3 chia 8 dư 3
=> 10091997 + 3 chia 8 dư 4
Ta có: 1998 ≡ 0 (mod 111) => 1997 ≡ -1 (mod 111) và 1999 ≡ 1 (mod 111)
Nên ta có: 1997^1998 + 1998^1999 +1999^2000 ≡ 2 (mod 111) (1997^1998 + 1998^1999 +1999^2000 )10 ≡ 210 (mod 111)
Mặt khác ta có: 210 = 1024 ≡ 25 (mod 111) Vậy (1997^1998 + 1998^1999 +1999^2000 ) ^ 10 chia cho 111 có số dư là 25
Mình làm cách khác được kết quả là 25
Còn cách này mình chưa biết làm , mong các bạn giúp đỡ
Đúng mình sẽ tick cho 2 tick
a)Ta thấy: 3 đồng dư với 0(mod 3)
=>32003 đồng dư với 02003(mod 3)
=>32003 đồng dư với 0(mod 3)
=>32003 chia 3 dư 0
b)Ta thấy: 52=25 đồng dư với 1(mod 12)
=>(52)35 đồng dư với 135(mod 12)
=>570 đồng dư với 1(mod 12)
Lại có: 72=49 đồng dư với 1(mod 12)
=>(72)25 đồng dư với 125(mod 12)
=>750 đồng dư với 1(mod 12)
=>570+750 đồng dư với 1+1(mod 12)
=>570+750 đồng dư với 2(mod 12)
=>570+750 chia 12 dư 2
vì 2003 là số nguyên tố, ta có:
19972002 đồng dư 1 (mod 2003)
=> 19972008 đồng dư 19976 (mod 2003)
19976 đồng dư 587 (mod 2003)
vậy số dư phép chia 19972003 cho 2003 là 587
ko chắc lắm
cảm ơn các bạn nhưng mk ko hiểu gì là mod, gì là đồng dư cả