K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2016

1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)

Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)

Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5

2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)

\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)

Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)

Vậy giá trị lớn nhất của B là 8 khi x = 2

2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)

\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)

Đẳng thức xảy ra khi: 4x + 1 = 0  => x = -0,25

Vậy giá trị lớn nhất của C là 5 khi x = -0,25

10 tháng 2 2019

\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)

dau '=' xay ra khi \(x=\frac{3}{2}\)

\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)

dau '=' xay ra khi \(x=1\)

18 tháng 9 2020

a) \(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)

b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được 

\(B=4x^2+4x+11\)

\(=4\left(x^2+x+\frac{11}{4}\right)\)

\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)

\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)

\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

c) Tìm GTLN nhé 

 \(C=5-8x-x^2\)

\(=-x^2-2.x.4-16+16+5\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)

Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)

                     \(\Leftrightarrow x=-4\)

Vậy\(C_{max}=21\Leftrightarrow x=-4\)

18 tháng 9 2020

A = x2 - 2x + 5

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

B = 4x2 + 4x + 11

= ( 4x2 + 4x + 1 ) + 10

= ( 2x + 1 )2 + 10 ≥ 10 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = 5 - 8x - x2

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxC = 21 <=> x = -4

17 tháng 9 2018

Bài 1:

a) \(x^2+10x+26+y^2+2y\)

\(=\left(x^2+10x+25\right)+\left(y^2+2y+1\right)\)

\(=\left(x+5\right)^2+\left(y+1\right)^2\)

b) \(4x^2-y^2-12x+2y+8\)

\(=4x^2-12x+9-y^2+2y-1\)

\(=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)

\(=\left(2x-3\right)^2-\left(y-1\right)^2\)

Bài 2:

\(P=4+8x-16x^2\)

\(P=-\left(16x^2-8x+4\right)\)

\(P=-\left[\left(4x\right)^2-2.4x+1+3\right]\)

\(P=-\left(4x-1\right)^2-3\)

\(-\left(4x-1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(4x-1\right)^2-3\le-3\) với mọi x

\(\Rightarrow Pmax=-3\Leftrightarrow4x-1=0\)

\(\Rightarrow4x=1\)

\(\Rightarrow x=\dfrac{1}{4}\)

Vậy Pmax = -3 <=> x = 1/4

30 tháng 6 2017

\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)

Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2

Vậy gtnn của biểu thức là -8 khi x=2

đề yêu cầu tìm cả max và min hay chỉ 1 là được?

2 tháng 12 2017

Tấm vải thứ 2 dài là :
                                 85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
                                 85 + 120 + 120 = 325 ( m )
                                                     Đ/S : 325 m

chúc cậu hok tốt @_@

15 tháng 10 2019

\(A=-\left(x^2-2x+4\right)\)

\(A=-\left(x+2\right)^2\)

vì -(x+2)^2 <=0

nên MIN A=0

<=>-(x+2)=0=>x=-2

vây min của A là 0 tại x=-2

15 tháng 10 2019

A = 2x - x- 4

A = - [ x- 2 . 1 / 2 . x + ( 1 / 2 )2 - ( 1 / 2 )-  4 ]

A = - ( x - 1 / 2 )- 17 / 4 \(\le\)- 17 / 4

Dấu = xảy ra \(\Leftrightarrow\)x - 1 / 2 = 0

                       \(\Rightarrow\)x = 1 / 2

Vậy : Min A = - 17 / 4 \(\Leftrightarrow\)x = 1 / 2

27 tháng 10 2019

a) Theo mình thì chỉ min thôi nhé!

\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)

b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(