Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\)=1 \(y\)= 12
b)\(x\)=4 \(y\)= 14
hoặc \(x\)= 6 \(y \)=21
...
x=\(\dfrac{-4.\left(-10\right)}{8}=5\).
y=\(\dfrac{-10.\left(-7\right)}{5}=14.\)
z=\(\dfrac{-7.\left(-24\right)}{14}=12.\)
a) x.21=6.7
x.21=42
x=42:21
x = 2
b) y . 20 = -5.28
y.20 = -140
y = (-140) : 20
y = -7
a)=>x*21=7*6
=>x*21=42
=>x=42/21
x=2
b)=>y*20=(-5)*28
=>y*20=-140
=>y=-140/20
y=-7
a) \(\dfrac{-5}{6}.\dfrac{120}{25}< x< \dfrac{-7}{15}.\dfrac{9}{14}\)
\(\Rightarrow-4< x< \dfrac{-3}{10}\)
\(\Rightarrow\dfrac{-40}{10}< x< \dfrac{-3}{10}\)
\(\Rightarrow x\in\left\{\dfrac{-39}{10};\dfrac{-38}{10};\dfrac{-37}{10};...;\dfrac{-5}{10};\dfrac{-4}{10}\right\}\)
b) \(\left(\dfrac{-5}{3}\right)^2< x< \dfrac{-24}{35}.\dfrac{-5}{6}\)
\(\Rightarrow\dfrac{25}{9}< x< \dfrac{4}{7}\)
\(\Rightarrow\dfrac{175}{63}< x< \dfrac{36}{63}\)
\(\Rightarrow x=\varnothing\)
c) \(\dfrac{1}{18}< \dfrac{x}{12}< \dfrac{y}{9}< \dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{2}{36}< \dfrac{3x}{36}< \dfrac{4y}{36}< \dfrac{9}{36}\)
\(\Rightarrow x\in\left\{1;2\right\}\)
+) Với \(x=1\)
\(\Rightarrow y\in\left\{1;2\right\}\)
+) Với \(x=2\)
\(\Rightarrow y=2\)
Vậy \(x=1\) thì \(y\in\left\{1;2\right\}\); \(x=2\) thì \(y=8\).
\(\dfrac{-2}{x}=\dfrac{y}{3}\)\(\Rightarrow\left(-2\right).3=x.y\:\Leftrightarrow\:x.y=-6\)
Ta có các cặp số (x;y): \(\left(x=-1;\:y=6\right);\:\left(x=1;\:y=-6\right);\:\left(x=-3;\:y=2\right);\:\left(x=3;\:y=-2\right)\)
Vì \(x< 0< y\) nên có các cặp số thoả mãn: \(\left(x=-1;\: y=6\right);\:\left(x=-3;\: y=2\right)\)
Vậy: \(x=-1;\: y=6\) và \(x=-3\: ;\: y=2\: \)
\(\dfrac{x}{7}+\dfrac{1}{y}=-\dfrac{1}{14}\Leftrightarrow\dfrac{xy+7}{7y}=\dfrac{\dfrac{-y}{2}}{7y}\\ \Leftrightarrow xy+7=-\dfrac{y}{2}\\ 2xy+14=-y\\ y\left(2x+1\right)=-14\)
Vì y,x là số nguyên nên 2x-1 là ước lẻ của -14 = {1;-1;7;-7}
Ta có bảng sau:
2x+1 | 1 | -1 | 7 | -7 |
x | 0 | -1 | 3 | -4 |
y | -14 | 14 | -2 | 2 |
Vậy (x,y) thuộc {(0,-14);(-1,14);(3,-2);(-4,2)}
vậy x và y e (-1,14),(0,-14),(3,-2),(-4,2)
Vì x/7+1/y=-1/14
=xy+7/7y=2/7y
xy+7=y/-2 (y/-2=-y/2)
2yx+14=-y
y.(2x+1)=-14
X và Y là số nguyên
2x-1 ước số lẻ của -14 :-7,-1,1,7
X =0,-1,3,-4
Y=-14,-2,2,14
1. a, \(\dfrac{x}{7}=\dfrac{9}{y}\Leftrightarrow xy=9.7\)
<=> xy = 63
=> x; y \(\inƯ\left(63\right)\)
Lại có x > y nên ta có bảng :
x | 63 | -1 | 21 | -3 | 9 | -7 |
y | 1 | -63 | 3 | -21 | 7 | -9 |
@Đặng Hoài An
1. b, \(\dfrac{-2}{x}=\dfrac{y}{5}\Leftrightarrow-2.5=xy\)
<=> -10 = xy
=> x; y \(\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Lại có : x < 0 < y
=> x = -1; -2; -5; -10
Tương ứng y = 10; 5; 2; 1
@Đặng Hoài An
a) x=\(\dfrac{5.6}{-10}=-3.\)
b) y=\(\dfrac{3.77}{-33}=-7.\)
Giải :
\(\dfrac{x-3}{y-2}=\dfrac{3}{2}\) nên 2(x-3) = 3(y-2)
Do đó : 2x - 6 = 3y - 6 nên 2x = 3y
\(\Rightarrow\) 2x - 2y = y hay 2(x-y) = y
Nên 2.4 = y
Vậy : \(y=8;x=\dfrac{3y}{2}=\dfrac{3.8}{2}=12\)
\(\dfrac{x-3}{y-2}=\dfrac{3}{2}\)
\(\Rightarrow\left(x-3\right)\cdot2=3\cdot\left(y-2\right)\)
\(\Rightarrow2x-6=3y-6\)
\(\Rightarrow2x=3y\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{3}{2}\)
mà x - y = 4
\(\Rightarrow\left\{{}\begin{matrix}x=4:\left(3-2\right)\cdot3=12\\y=4:\left(3-2\right)\cdot2=8\end{matrix}\right.\)
\(\dfrac{x}{7}+\dfrac{1}{y}=\dfrac{-1}{14}\)
=>\(\dfrac{xy+7}{7y}=\dfrac{-1}{14}\)
=>\(14\left(xy+7\right)=-7y\)
=>2(xy+7)=-y
=>2xy+y=-14
=>y(2x+1)=-14
mà 2x+1 lẻ(do x nguyên)
nên \(\left(2x+1\right)\cdot y=1\cdot\left(-14\right)=\left(-1\right)\cdot14=7\cdot\left(-2\right)=\left(-7\right)\cdot2\)
=>\(\left(2x+1;y\right)\in\left\{\left(1;-14\right);\left(-1;14\right);\left(7;-2\right);\left(-7;2\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-14\right);\left(-1;14\right);\left(3;-2\right);\left(-4;2\right)\right\}\)