Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
quy đồng mẫu thức ta được
\(\frac{yz\left(z-y\right)+xz\left(x-z\right)+xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)\(=\frac{yz\left(z-y\right)+xz\left(x-z\right)-xy\left[\left(z-y\right)+\left(x-z\right)\right]}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{y\left(z-y\right)\left(z-x\right)+x\left(x-z\right)\left(z-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(z-y\right)\left(z-x\right)\left(y-x\right)}{xyz\left(z-y\right)\left(z-x\right)\left(y-x\right)}=\frac{1}{xyz}\)
\(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=0\)
Anh có cách khác nè :
\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-z\right)\left(y-z\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}\)
\(=\frac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{yz\left(x-y+z-x\right)-zx\left(z-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left(x-y\right)\left(yz-xy\right)-\left(z-x\right)\left(zx-yz\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{y\left(x-y\right)\left(z-x\right)-z\left(x-y\right)\left(z-x\right)}{xyz\left(x-y\right)\left(y-\right)\left(z-x\right)}\)
\(=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{1}{xyz}\)
\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-x\right)\left(y-z\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}\)
\(=\frac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{-y^2z+yz^2-z^2x+zx^2-x^2y+xy^2}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{-y^2\left(z-x\right)-zx\left(z-x\right)+y\left(z^2-x^2\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left(z-x\right)\left(yz+xy-y^2-zx\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left(z-y\right)\left[y\left(x-y\right)-z\left(x-y\right)\right]}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
\(=\frac{1}{xyz}\)
P=\(\frac{x}{\left(x-y\right)\left(x-z\right)}+\frac{y}{\left(y-x\right)\left(y-z\right)}+\frac{z}{\left(z-y\right)\left(z-x\right)}\) =\(\frac{x}{\left(x-y\right)\left(x-z\right)}-\frac{y}{\left(x-y\right)\left(y-z\right)}+\frac{z}{\left(y-z\right)\left(x-z\right)}\) =\(\frac{x\left(y-z\right)-y\left(x-z\right)+z\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\) =\(\frac{xy-xz-xy+yz+xz-yz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\) =0