Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g) \(x^5-3x^4+3x^3-x^2=x^2\left(x^3-3x^2+3x-1\right)=x^2\left(x-1\right)^3\)
f) \(x^2-25-2xy+y^2=\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)
e) \(16x^3+54y^3=2\left(8x^3+27y^3\right)=2\left[\left(2x\right)^3+\left(3y\right)^3\right]=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
d) \(3y^2-3z^2+3x^2+6xy=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)
Answer:
Câu 1:
\(\left(5x-x-\frac{1}{2}\right)2x\)
\(=\left(4x-\frac{1}{2}\right)2x\)
\(=4x.2x-\frac{1}{2}.2x\)
\(=8x^2-x\)
\(\left(x^3+4x^2+3x+12\right)\left(x+4\right)\)
\(=x\left(x^3+4x^2+3x+12\right)+4\left(x^3+4x^2+3x+12\right)\)
\(=x^4+4x^3+3x^2+12x+4x^3+16x^2+12x+48\)
\(=x^4+\left(4x^3+4x^3\right)+\left(3x^2+16x^2\right)+\left(12x+12x\right)+48\)
\(=x^4+8x^3+19x^2+24x+48\)
Ta thay \(x=99\) vào phân thức \(\frac{x^2+1}{x-1}\): \(\frac{\left(99\right)^2+1}{99-1}=\frac{9802}{98}=\frac{4901}{49}\)
Ta thay \(x=4\) vào phân thức \(\frac{x^2-x}{2\left(x-1\right)}\) : \(\frac{4^2-4}{2.\left(4-1\right)}=\frac{12}{6}=2\)
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(= (x²+2xy+y²)-(x²-2xy+y²)\)
\(= x²+2xy+y²-x²+2xy-y²\)
\(= 4xy\)
\(4x^2+4x+1=\left(2x+1\right)^2=\left(2.2+1\right)^2=25\)
Câu 2:
\(x^2+x=0\)
\(\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(x^2.\left(x-1\right)+4-4x=0\)
\(\Rightarrow x^2.\left(x-1\right)+4\left(1-x\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)
Trường hợp 1: \(x-1=0\Rightarrow x=1\)
Trường hợp 2: \(x-2=0\Rightarrow x=2\)
Trường hợp 3: \(x+2=0\Rightarrow x=-2\)
Câu 3: Bạn xem lại đề bài nhé.
Answer:
\(5x^2-10xy+5y^2-20z^2\)
\(=5.\left(x^2-2xy+y^2-4z^2\right)\)
\(=5.[\left(x+y\right)^2-\left(2z\right)^2]\)
\(=5.\left(x+y-2z\right).\left(x+y+2z\right)\)
\(16x-5x^2-3\)
\(=\left(-5x^2+15x\right)+\left(x-3\right)\)
\(=-5x.\left(x-3\right)+\left(x-3\right)\)
\(=\left(1-5x\right).\left(x-3\right)\)
\(x^2-5x+5y-y^2\)
\(=(x-y).(x+y)-5.(x-y)\)
\(=(x-y).(x+y-5)\)
\(3x^2-6xy+3y^2-12z^2\)
\(=3.(x^2-2xy+y^2-4z^2)\)
\(=3[\left(x-y\right)^2-\left(2z\right)^2]\)
\(=3.(x-y-2z).(x-y+2z)\)
\(x^2+4x+3\)
\(=(x^2+x)+(3x+3)\)
\(=x.(x+1)+3.(x+1)\)
\(=(x+1).(x+3)\)
\((x^2+1)^2-4x^2\)
\(=(x^2-2x+1).(x^2+2x+1)\)
\(=(x-1)^2.(x+1)^2\)
\(x^2-4x-5\)
\(=(x^2+x)-(5x+5)\)
\(=x.(x+1)-5.(x+1)\)
\(=(x-5).(x+1)\)
\(a,x^2-5x\)
\(=x\left(x-5\right)\)
\(b,5x\left(x+5\right)+4x+20\)
\(=5x\left(x+5\right)+4\left(x+5\right)\)
\(=\left(5x+4\right)\left(x+5\right)\)
\(c,7x\left(2x-1\right)-4x+2\)
\(=7x\left(2x-1\right)-2\left(2x-1\right)\)
\(=\left(7x-2\right)-\left(2x-1\right)\)
\(d,x^2-16+2\left(x+4\right)\)
\(=x^2-16+2x+8\)
\(=x\left(x-2\right)-8\) ( Ý này thì k chắc lắm, sai thông cảm :)) )
\(e,x^2-10x+9\)
\(=x^2-x-9x+9\)
\(=x\left(x-1\right)-9\left(x-1\right)\)
\(=\left(x-9\right)\left(x-1\right)\)
\(f,\left(2x-1\right)^2-\left(x-3\right)^2=0\) ( mk đoán bài này là tìm x, sai thì bảo mk để mk sửa nhé )
\(\Rightarrow\left(2x-1\right)^2=\left(x-3\right)^2\)
\(\Leftrightarrow\pm\left(2x-1\right)=\pm\left(x-3\right)\)
\(\Rightarrow\hept{\begin{cases}2x-1=x-3\\-\left(2x-1\right)=-\left(x-3\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-1-x+3=0\\-2x+1-x+3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+2=0\\-3x+4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\left(-2\right)\\x=\frac{4}{3}\end{cases}}\)
Vậy ...
\(4x^2-25+\left(2x+7\right).\left(5-2x\right)\)
\(=\left(2x+5\right).\left(2x-5\right)-\left(2x+7\right).\left(2x-5\right)\)
\(=\left(2x+5-2x-7\right).\left(2x-5\right)\)
\(=-2.\left(2x-5\right)\)
\(a^2x^2-a^2x^2-b^2x^2+b^2y^2\)
\(=a^2.\left(x^2-y^2\right)-b^2.\left(x^2-y^2\right)\)
\(=\left(a^2-b^2\right).\left(x^2-y^2\right)\)
\(=\left(a-b\right).\left(a+b\right).\left(x-y\right).\left(x+y\right)\)
\(x^2-y^2+12y-36\)
\(=x^2-\left(y^2-12y+36\right)\)
\(=x^2-\left(y-6\right)^2\)
\(=\left(x-y+6\right).\left(x+y-6\right)\)
\(\left(x+2\right)^2-x^2+2x-1\)
\(=\left(x+2\right)^2-\left(x^2-2x+1\right)\)
\(=\left(x+2\right)^2-\left(x-1\right)^2\)
\(=[x+2-\left(x-1\right)].[x+2+\left(x-1\right)]\)
\(=\left(x+2-x+1\right).\left(x+2+x-1\right)\)
\(=3.\left(2x+1\right)\)
\(16x^2-y^2=\left(4x\right)^2-y^2=\left(4x-y\right).\left(4x+y\right)\)
\(1+27x^3=1^3+\left(3x\right)^3=\left(1+3x\right).\left(1-3x+9x^2\right)\)
Bài 2:
a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
=>-13x=26
hay x=-2
b: \(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
hay \(x\in\left\{1;\dfrac{1}{5}\right\}\)
c: \(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
hay \(x\in\left\{-5;2\right\}\)