Bài 7 . Phân tích các đa thức sau thành nhân...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

g) \(x^5-3x^4+3x^3-x^2=x^2\left(x^3-3x^2+3x-1\right)=x^2\left(x-1\right)^3\)

f) \(x^2-25-2xy+y^2=\left(x^2-2xy+y^2\right)-25=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)

e) \(16x^3+54y^3=2\left(8x^3+27y^3\right)=2\left[\left(2x\right)^3+\left(3y\right)^3\right]=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

d) \(3y^2-3z^2+3x^2+6xy=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)

29 tháng 11 2021

ko bít

29 tháng 11 2021

Answer:

\(5x^2-10xy+5y^2-20z^2\)

\(=5.\left(x^2-2xy+y^2-4z^2\right)\)

\(=5.[\left(x+y\right)^2-\left(2z\right)^2]\)

\(=5.\left(x+y-2z\right).\left(x+y+2z\right)\)

\(16x-5x^2-3\)

\(=\left(-5x^2+15x\right)+\left(x-3\right)\)

\(=-5x.\left(x-3\right)+\left(x-3\right)\)

\(=\left(1-5x\right).\left(x-3\right)\)

\(x^2-5x+5y-y^2\)

\(=(x-y).(x+y)-5.(x-y)\)

\(=(x-y).(x+y-5)\)

\(3x^2-6xy+3y^2-12z^2\)

\(=3.(x^2-2xy+y^2-4z^2)\)

\(=3[\left(x-y\right)^2-\left(2z\right)^2]\)

\(=3.(x-y-2z).(x-y+2z)\)

\(x^2+4x+3\)

\(=(x^2+x)+(3x+3)\)

\(=x.(x+1)+3.(x+1)\)

\(=(x+1).(x+3)\)

\((x^2+1)^2-4x^2\)

\(=(x^2-2x+1).(x^2+2x+1)\)

\(=(x-1)^2.(x+1)^2\)

\(x^2-4x-5\)

\(=(x^2+x)-(5x+5)\)

\(=x.(x+1)-5.(x+1)\)

\(=(x-5).(x+1)\)

23 tháng 11 2018

a,3x2-6x+9x2

=>12x2-6x

=>6x(2x-1)

b,10x(x-y)-6y(y-x)

=>10x(x-y)-6y(-(x-y))

=>10x(x-y)+6y(x-y)

=>2(x-y)(5x+3y)

c,3x2+5y-3xy-5x

=>3x(x-y)-5(x-y)

=>(x-y)(3x-5)

d,3y2-3z2+3x2+6xy

=>3(y2-z2+x2+2xy)

=>3[(y+x)2-z2]

=>3(y+x-z)(y+x+z)

e,16x3+54y3

=>2(8x3+27y3)

=>2(2x+3y)(4x2-6xy+9y2)

g,x2-25-2xy+y2

=>(x-y)2-25

=>(x-y-5)(x-y+5)

h,x5-3x4+3x3-x2

=>x2(x3-3x2+3x-1)

=>x2(x-1)3

Nhớ tick cho mk nhé

23 tháng 11 2018

Phân thức đại số

27 tháng 10 2017

a) \(=2xy^2\left(x^2+8x+15\right)\)

\(=2xy^2\left[\left(x^2+8x+16\right)-1\right]\)

\(=2xy^2\left[\left(x+4\right)^2-1\right]\)

\(=2xy^2\left(x+4+1\right)\left(x+4-1\right)\)

\(=2xy^2\left(x+5\right)\left(x-3\right)\)

mấy câu sau tự làm nha :*

29 tháng 10 2017

b,=(x^2-10x+25)-4

  =(x-5)^2-2^2

  =(x-5-2)(x-5+2)

  =(x-7)(x-3)

28 tháng 10 2018

a) \(x^3+2x^2y+xy^2-4xz^2=x\left(x^2+2xy+y^2-4z^2\right)=x\left[\left(x+y\right)^2-\left(2z\right)^2\right]\)

\(=x\left(x+y-2z\right)\left(x+y+2z\right)\)

b)\(-8x^3+12x^2y-6xy^2+y^3=y^3+3.y.\left(2x\right)^2-3.y^2.2x-\left(2x\right)^3\)\(=\left(y-2x\right)^3\)

c)\(6x^2+7x-5=2x\left(3x+5\right)-\left(3x+5\right)=\left(3x+5\right)\left(2x-1\right)\)

d)\(x^4+64y^4=\left(x^2\right)^2+2.x^2.8y^2+\left(8y^2\right)^2-16x^2y^2=\left(x^2+8y^2\right)-\left(4xy\right)^2\)

\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)

e)\(x\left(2-x\right)-x+2=x\left(2-x\right)+\left(2-x\right)=\left(2-x\right)\left(x+1\right)\)

f)\(2x^2+3x-2=2x\left(x+2\right)-\left(x+2\right)=\left(x+2\right)\left(2x-1\right)\)

h)\(3x^2-6xy+3y^2-12z^2=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

g)\(x^3-3x^2-9x+27=x^2\left(x-3\right)-9\left(x-3\right)=\left(x-3\right)\left(x^2-9\right)\)\(=\left(x-3\right)^2\left(x+3\right)\)

B2: \(x^3-5x=0\Rightarrow x\left(x^2-5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x^2-5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=5\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{5}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=5\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\sqrt{5}\\x=-\sqrt{5}\end{cases}}\end{cases}}\)

27 tháng 8 2016

Giải giúp mình nhé.

13 tháng 10 2018

\(3x^4-5x^3-18x^2-3x+5\)

\(=\left(3x^4-6x^3-15x^2\right)+\left(x^3-2x^2-5x\right)-\left(x^2-2x-5\right)\)

\(=3x^2\left(x^2-2x-5\right)+x\left(x^2-2x-5\right)-\left(x^2-2x-5\right)\)

\(=\left(x^2-2x-5\right)\left(3x^2+x-1\right)\)

28 tháng 1 2020

Thank you.

Bài 1: 

a: \(x^2\left(3x+2\right)=3x^3+2x^2\)

b: \(\left(x-2\right)\left(3x^2-4x+1\right)\)

\(=3x^3-4x^2+x-6x^2+8x-2\)

\(=3x^2-10x^2+9x-2\)

c: \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(x-3\right)\left(x+3\right)\)

\(=27x^3+8-x^2+9=27x^3-x^2+17\)

d: \(=\left(x+y-x-y+z\right)\left(x+y+x+y-z\right)\)

\(=z\left(2x+2y-z\right)\)

\(=2xz+2yz-z^2\)

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2 Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là: A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2 ...
Đọc tiếp

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.

Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:

A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2

C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2

Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là:

A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2

Câu 3: Giá trị của biểu thức x + 2x + 1 tại x = -1 là:

A) 4 B) -4 C) 0 D) 2

Câu 4: Kết quả khai triển của hằng đẳng thức (x + y)3 là:

A) x2 + 2xy + y2 B) x3 + 3x2y + 3xy2 + y3

C) (x + y).(x2 – xy + y2) D) x3 - 3x2y + 3xy2 - y3

Câu 5: Kết quả của phép chia (20x4y – 25x2y2 – 5x2y) : 5x2y là:

A) 4x2 – 5y + xy B) 4x2 – 5y – 1

C) 4x6y2 – 5x4y3 – x4y2 D) 4x2 + 5y - xy

Câu 6: Đẳng thức nào sau đây là Sai:

A) (x - y)3 = x3 - 3x2y + 3xy2 - y3 B) x3 – y3 = (x - y)(x2 - xy + y2) C) (x - y)2 = x2 - 2xy + y2 D) (x - 1)(x + 1) = x2 - 1

II. Tự luận (7 điểm)

Câu 1 ( 1 điểm): Rút gọn biểu thức P = (x - y)2 + (x + y)2 – 2.(x + y)(x – y) – 4x2

Câu 2 (3 điểm): Phân tích các đa thức sau thành nhân tử:

a/ x3 – x2y + 3x – 3y

b/ x3 – 2x2 – 4xy2 + x

c/ (x + 2)(x+3)(x+4)(x+5) – 8

Câu 3 (2 điểm): Làm tính chia:(x4 – x3 – 3x2 + x + 2) : (x2 – 1)

Câu 4 (1 điểm): Cho x, y là 2 số khác nhau thoả mãn x2 – y = y2 – x. Tính giá trị của biểu thức A = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y).

help mekhocroi

2
23 tháng 10 2016

Đại số lớp 8

Vậy (x^4 - x^3 - 3x^2 + x + 2) = (x^2 - x - 1)(x^2 - 1) + 1

23 tháng 10 2016

Đại số lớp 8

Đại số lớp 8

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)

\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)

\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)

\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt \(x^2+7x+10=t\), ta có:

\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)

\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)