Từ điểm A ở ngoài (O; R) vẽ hai tiếp tuyến AB, AC( B, C là hai tiếp điểm). Gọi H là giao...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2021

Mình chỉ biết làm câu a thôi nhé bạn 🙂🙂🙂.

a) Chứng minh OA vuông góc BC và OH.OA = R2
Xét (O) có:
✱ OB=OC (=R)
✱ AB=AC (tính chất 2 tiếp tuyến cắt nhau)
⇒ O,A  thuộc đường trung trực của BC.
⇒ OA là đường trung trực của BC.
⇒ OA ⊥ BC tại đường trung điểm H của BC.
Xét ΔABO vuông tại B có đường cao BH (cmt) có:
    OB2=OH.OA (hệ thức lượng) (1)
Mà OB=R (cmt) ⇒ OB2=R2 (2)
Từ (1) và (2) ⇒ OH.OA=R2

19 tháng 12 2021

\(a,\) Vì AB=AC (tc 2 tiếp tuyến) nên A∈ trung trực BC

Vì OB=OC=R nên O∈ trung trực BC

Do đó OA là trung trực BC

Do đó OA⊥BC tại H

Áp dụng HTL tam giác OAC vuông C: \(OH\cdot OA=OC^2=R^2\)

19 tháng 12 2021

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của CB(2)

Từ (1) và (2) suy ra OA⊥BC

19 tháng 12 2021

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA⊥BC

19 tháng 12 2021

Bạn biết làm câu b và c không?

15 tháng 12 2017

O A B C D E H F

a) Do D thuộc đường tròn (O), AB là đường kính nên \(\widehat{BDC}=90^o\Rightarrow BD\perp AC\)

Xét tam giác vuông ABC, đường cao BD ta có:

\(AB^2=AD.AC\)  (Hệ thức lượng)

b) Xét tam giác BEC có O là trung điểm BC; OH // CE nên OH là đường trung bình của tam giác. Vậy nên H là trung điểm BE.

Ta có OH // CE mà CE vuông góc AB nên \(OH\perp BE\)

Xét tam giác ABE có AH là trung tuyến đồng thời đường cao nên nó là tam giác cân.

Hay AB = AE.

Từ đó ta có \(\Delta ABO=\Delta AEO\left(c-c-c\right)\Rightarrow\widehat{OEA}=\widehat{OBA}=90^o\)

Vậy AE là tiếp tuyến của đường tròn (O)

c) Xét tam giác vuông OBA đường cao BH, ta có:

\(OB^2=OH.OA\) (Hệ thức lượng)

\(\Rightarrow OC^2=OH.OA\Rightarrow\frac{OH}{OC}=\frac{OC}{OA}\)

Vậy nên \(\Delta OHC\sim\Delta OCA\left(c-g-c\right)\Rightarrow\widehat{OHC}=\widehat{OCA}\)

d) Ta thấy \(\widehat{OCF}=\widehat{FCE}\left(=\widehat{OFC}\right)\)

Lại có \(\widehat{OCH}=\widehat{ACE}\left(=\widehat{OAC}\right)\)

Nên \(\widehat{HCF}=\widehat{FCA}\) hay CF là phân giác góc HCA.

Xét tam giác HCA, áp dụng tính chất đường phân giác trong tam giác, ta có:

\(\frac{HF}{FA}=\frac{HC}{CA}\Rightarrow FA.HC=HF.CA\left(đpcm\right)\)

15 tháng 12 2017

ở phần c còn cạnh nào nữa để 2 tam giác đấy đồng dạng vậy cậu

16 tháng 12 2015

tick mik đc 300 điểm hỏi đáp nha,mik sẽ tick lại

20 tháng 11 2017

a/ * dựa vào tính chất đường trung tuyến ứng vs 1 cạnh = 1/2 cạnh ấy thì tam giác đó vuông ta sẽ CM đc tg BCD vuông tại C

    *Có AC=AB(vì đg thẳng là tiếp tuyến của đg tròn vuông góc với bk đi qua tiếp điểm)

=>A cách đều A và B

=>AH vuông góc BC

b/Áp dụng hệ thức lượng trong tam giác vuông ABO có : OH.OA=OB^2=R^2

mk cx đg làm bài này nhg ms chỉ đến đây thôi