Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AM+MB=AB
BN+NC=BC
CP+PD=CD
DQ+QA=DA
mà AB=BC=CD=DA và AM=BN=CP=DQ
nên MB=NC=PD=QA
Xét ΔMAQ vuông tại A và ΔPCN vuông tại C có
MA=PC
AQ=CN
Do đó: ΔMAQ=ΔPCN
=>MQ=PN
Xét ΔNBM vuông tại B và ΔQDP vuông tại D có
NB=QD
BM=DP
Do đó: ΔNBM=ΔQDP
=>NM=QP
Xét ΔMAQ vuông tại M và ΔNBM vuông tại B có
MA=NB
AQ=BM
Do đó: ΔMAQ=ΔNBM
=>\(\widehat{AMQ}=\widehat{BNM}\)
=>\(\widehat{AMQ}+\widehat{BMN}=90^0\)
\(\widehat{AMQ}+\widehat{QMN}+\widehat{NMB}=180^0\)
=>\(\widehat{QMN}+90^0=180^0\)
=>\(\widehat{QMN}=90^0\)
Xét tứ giác MNPQ có
MN=PQ
MQ=NP
Do đó: MNPQ là hình bình hành
mà \(\widehat{QMN}=90^0\)
nên MNPQ là hình chữ nhật
=>M,N,P,Q cùng thuộc 1 đường tròn
b: Xét ΔABQ vuông tại A có
\(tanABQ=\dfrac{AQ}{AB}\)
=>\(\dfrac{AQ}{a}=tan30=\dfrac{\sqrt{3}}{3}\)
=>\(AQ=\dfrac{a\sqrt{3}}{3}\)
ΔAQB vuông tại A
=>\(BQ^2=AB^2+AQ^2\)
=>\(BQ^2=a^2+\left(\dfrac{a\sqrt{3}}{3}\right)^2=\dfrac{4}{3}a^2\)
=>\(BQ=\dfrac{2a}{\sqrt{3}}\)
Vì AP//DN nên theo định lí Ta-lét ta có
\(\frac{CN}{BK}=\frac{CQ}{QK}=\frac{CD}{KP}\)
\(\Rightarrow CN.KP=CD.BK\)
Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR
\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào
A B C D M N H I
Kẽ NI // BC
\(\Rightarrow\frac{DN}{DC}=\frac{AI}{AB}=\frac{AM}{AH}\)
\(\Rightarrow\)MI // BH
\(\Rightarrow\widehat{IMB}=\widehat{MBH}\left(1\right)\)
Tứ giác IBCN có
\(\widehat{IBC}=\widehat{BIN}=\widehat{BCN}\)
\(\Rightarrow\)Tứ giác IBCN là hình chữ nhật
\(\Rightarrow\widehat{NBC}=\widehat{BCI}\left(2\right)\)
Xét tứ giác IMCB có
\(\widehat{IMC}=90\)(vì IM // BH và BH vuông góc AC)\
\(\widehat{IBC}=90\)
\(\Rightarrow\)Tứ giác IMCB là tứ giác nội tiếp đường tròn
\(\Rightarrow\widehat{IMB}=\widehat{ICB}\left(3\right)\)(cùng chắn cung IB)
Từ (1),(2),(3) \(\Rightarrow\widehat{MBH}=\widehat{NBC}\)
\(\Rightarrow\widehat{BMC}=90-\widehat{MBH}=90-\widehat{NBC}=\widehat{CNB}\)
\(\Rightarrow\)Tứ giác MBCN nội tiếp đường tròn
Hay M,B,C,N cùng nằm trên một đường tròn