Tam giác ABC (góc A = 90 độ) có AB=12cm,BC=20cm,đường phân giác AD của góc A.Tính BD,DC ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)

Xét ΔACB có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=20/7

=>DB=60/7cm; DC=80/7cm

28 tháng 2 2023

Thiếu rồi anh ạ

28 tháng 2 2023

Cần gấp!!!

Hình bạn tự vẽ nha

GTΔACB vuông tại A, BD là phân giác, AB/CB=3/5; AC=16cm
KL

a: AB=?; BC=?

b: AD=?; CD=?

a: AB/BC=3/5

=>AB/3=BC/5=k

=>AB=3k; BC=5k

BC^2=AB^2+AC^2

=>16k^2=16^2=256

=>k^2=16

=>k=4

=>AB=12cm; CB=20cm

b: BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=16/8=2

=>AD=6cm; CD=10cm

28 tháng 2 2023

A B C 16 D

Với `(AB)/(BC) = 3/5`

`=> (AB)/3 = (BC)/5`

Đặt `(AB)/3 = (BC)/5 = k (k > 0)`

`=> AB = 3k; BC = 5k`

Áp dụng định lý pitago vào tam giác `ABC` vuông tại `A`

`=> AB^2 + AC^2 = BC^2`

`=> (3k)^2 + 16^2 = (5k)^2`

`=> 9k^2 + 256 = 25k^2`

`=> 16k^2 = 256`

`=> k^2 = 16`

`=> k^2 = 4^2`

`=> k = 4 (`Vì `k > 0)`

Khi đó: `AB = 3k = 4 . 3 = 12 (cm)`

`BC = 5k = 5 . 4 = 20 (cm)`

b) Tam giác `ABC` có BD là tia phân giác của tam giác `ABC`. Áp dụng tính chất đường phân giác trong tam giác

`=> (AD)/(AB) = (DC)/(BC) `

`=> (AD)/12 = (DC)/20`

Áp dụng tính chất dãy tỉ số bằng nhau

`=> (AD)/12 = (DC)/20 = (AD + DC)/(12 + 20) = 16/32 = 1/2`

`=> AD = 1/2 xx 12 = 6 (cm) ; DC = 1/2 xx 20 = 10 (cm)`

a: AB/BC=3/5

=>AB/3=BC/5=k

=>AB=3k; BC=5k

BC^2=AB^2+AC^2

=>16k^2=16^2=256

=>k^2=16

=>k=4

=>AB=12cm; CB=20cm

b: BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=16/8=2

=>AD=6cm; CD=10cm

a: AB/BC=3/5

=>AB/3=BC/5=k

=>AB=3k; BC=5k

BC^2=AB^2+AC^2

=>16k^2=16^2=256

=>k^2=16

=>k=4

=>AB=12cm; CB=20cm

b: BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=16/8=2

=>AD=6cm; CD=10cm

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)

Xét ΔBAC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{12}=\dfrac{CD}{20}\)

mà BD+CD=28cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{12}=\dfrac{CD}{20}=\dfrac{BD+CD}{12+20}=\dfrac{28}{32}=\dfrac{7}{8}\)

Do đó: BD=10,5cm; CD=17,5cm

Xét ΔBAC có 

DE//AB

nên \(\dfrac{DE}{AB}=\dfrac{CD}{BC}\)

\(\Leftrightarrow DE=\dfrac{17.5}{28}\cdot12=7.5\left(cm\right)\)

7 tháng 6 2019

Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha 

~ Hok tốt ~
#JH

7 tháng 6 2019

a) 

Xét tam giác ABC ta có

\(AB^2+AC^2=BC^2\)(định lý py ta go)

144 + 256 = BC2

400 = BC2

BC = 20 ( cm )

Xét tam giác ABC có 

BD là đường phân giác của tam giác 

nên AD/DC = AB/BC = 16/20 = 4/5

có AD + DC = AC = 16 

dễ tìm ra AD = 64/9  (cm)

DC = 80/9 (cm)

b) xét 2 tam giác HBA và ABC

có góc ABC chung

2 góc AHB và CAB bằng nhau cùng bằng 90 độ

nên 2 tam giác HAB và ABC đồng dạng với nhau

c)

có 2 tam giác HAB và ABC đồng dạng với nhau

nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)

d)

có E là hình chiếu của của C trên BD

nên \(CE\perp BD\)

suy ra \(\widehat{BEC}=90^0\)

xét 2 tam giác BHK và BEC

có \(\widehat{BHK}=\widehat{BEC}=90^0\)

\(\widehat{CEB}\)chung

nên 2 tam giác BHK và BEC đồng dạng với nhau

suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)

có 2 tam giác HAB và ABC đồng dạng với nhau

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)

từ (1) và (2) suy ra 

\(AB^2=BK\cdot BE\)

a) Vì tam giác ABC vuông tại A 

=> BAC = 90 độ

=> Vì K là hình chiếu của H trên AB 

=> HK vuông góc với AB

=> HKA = 90 độ

=> HKA = BAC = 90 độ

=> KH // AI 

=> KHIA là hình thang

Mà I là hình chiếu của H trên AC

=> HIA = 90 độ

=> HIA = BAC = 90 độ

=> KHIA là hình thang cân

b) Vì KHIA là hình thang cân

=> KA = HI 

=  >KI = HA 

Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có

KA = HI

KI = AH 

=> Tam giác KAI = tam giác HIC ( cgv-ch)

=> KIA = ACB ( DPCM)

c) con ý này tớ nội dung chưa học đến  thông cảm

14 tháng 4 2019

* Trong △ ABC, ta có:

AD là đường phân giác của ∠ (BAC)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (tính chất tia phân giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy DC = BC - DB = 28 - 10,5 = 17,5 (cm)

* Trong △ ABC, ta có: DE // AB

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét)

Vậy: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8