Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài ta có:
\(S=1\cdot6+2\cdot9+3\cdot12+4\cdot15+...+98\cdot297+99\cdot300\)
\(=1\cdot\left(2\cdot3\right)+2\cdot\left(3\cdot3\right)+...+98\cdot\left(99\cdot3\right)+99\cdot\left(100\cdot3\right)\)
\(=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+98\cdot99\cdot\left(100-97\right)+99\cdot100\cdot\left(101-98\right)\)
\(=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+98\cdot99\cdot100-97\cdot98\cdot99+99\cdot100\cdot101-98\cdot99\cdot100\)
\(=99\cdot100\cdot101\)
\(=999900\)
S= 1.6+2.9+3.12+4.15+...+98.297+99.300
hoặc
S= 1.6+2.9+3.12+4.15+...+97.297+98.300
đề sai một trong hai chỗ đó nha bn
\(A=\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{n\left(n+5\right)}\)
\(A=\frac{1}{5}\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{n\left(n+5\right)}\right)\)
\(A=\frac{1}{5}\left(\frac{6-1}{1.6}+\frac{11-6}{6.11}+...+\frac{n+5-n}{n\left(n+5\right)}\right)\)
\(A=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+5}\right)\)
\(A=\frac{1}{5}\left(1-\frac{1}{n+5}\right)\)
\(A=\frac{n+4}{5n+25}\)
\(B=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(3B=1.2.3+2.3.3+3.4.3+...+n\left(n+1\right).3\)
\(3B=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(3B=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
\(3B=n\left(n+1\right)\left(n+2\right)\)
\(B=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Khoảng cách là 3 đơn vị
Số thứ 23 là : 3 x (23 - 1) + 4 = 70
\(S=4+7+10+13+...+145+148\)
A.
Số số hạng thứ 23 của S:
\(\frac{x-4}{3}+1=23\)
\(\Rightarrow\frac{x-4}{3}=22\)
\(\Rightarrow x-4=22.3\)
\(\Rightarrow x-4=66\)
\(\Rightarrow x=4+66\)
\(\Rightarrow x=70\)
B.
Có số hạng của dãy số S: \(\frac{148-4}{3}+1=49\)số hạng
Tổng dãy số S: \(\left(148+4\right).32:2=2432\)
3n.62 =3n.22.32 =3n+2.22 có số ước là (n+2+1)(2+1) =(n+3).3
Đẻ có 15 ước
=> 3.(n+3) =15
=> n+3 =5 => n =2
S = 1.6 + 2.9 + 3.12 + 4.15+...+98.297 + 99.300
= 1.2.3 +2.3.3+ 3.3.4 + 3.4.5 + .....+ 98.99.3 + 99.100.3
=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+..+98.99.(100-97)+99.100.(101-98)
= 1.2.3 -2.3.1+2.3.4-2.3.4+3.4.5+..+98.99.100-98.99.100+99.100.101
= 99.100.101
= 999900