Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E D C B H K x M N A
a) Xét \(\Delta BEA\) và \(\Delta DCA\) có:
AE = AC (gt)
\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)
AB = AD (gt)
\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)
\(\Rightarrow BE=CD\) (2 cạnh t/ư)
b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)
\(DN=\frac{1}{2}CD\) (N là tđ)
mà BE = CD \(\Rightarrow BM=DN\)
Vì \(\Delta BEA=\Delta DCA\) (câu a)
\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)
hay \(\widehat{MBA}=\widehat{NDA}\)
Xét \(\Delta ABM\) và \(\Delta ADN\) có:
AB = AD (gt)
\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)
BM = DN (c/m trên)
\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)
mà \(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)
\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)
\(\Rightarrow M,A,N\) thẳng hàng.
a) Ta có \(MB=MC=\dfrac{BC}{2}\) (Vì M là trung điểm của BC)
Xét \(\Delta MAB\) \(và\) \(\Delta MDC\) \(có\)
\(MB=MC\) (chứng minh trên)
\(\widehat{AMB}=\widehat{DMC}\) (2 góc đối đỉnh)
\(MA=MD\) (giả thiết )
\(\Rightarrow\) \(\Delta MAB\) \(=\) \(\Delta MDC\) \(\left(c-g-c\right)\)
vậy \(\Delta MAB\) \(=\) \(\Delta MDC\)
b)ta có \(\Delta MAB\) \(=\) \(\Delta MDC\) (chứng minh câu a)
\(\Rightarrow\widehat{MAB}=\widehat{MDC}\) (2 góc tương ứng )
hay \(\widehat{DAB}=\widehat{ADC}\) mà 2 góc này là 2 góc so le trong của đường thẳng AD cắt AB và DC
\(\Rightarrow AB//CD\)
vậy \(AB//CD\)
c) ta có \(\Delta MAB=\Delta MDC\) (chứng minh câu a)
\(\Rightarrow AM=MC\) (2 cạnh tương ứng )
mà \(AM=DM\) (giả thiết )
và \(MB=MC\) (chứng minh câu a)
\(\Rightarrow AM=\dfrac{BC}{2}\) hay \(BC=2AM\)
vậy \(BC=2AM\)
d) ta có \(\Delta ABC\) vuông tại A
\(\Rightarrow\widehat{BAC}=90độ\)
\(\Rightarrow AB\perp AC\)
Vì \(AB\perp AC\)
mà \(AB//CD\)
\(\Rightarrow AB\perp BD\)
vậy \(AB\perp BD\)
a) Do M là trung điểm của BC (gt)
⇒ MB = MC
Xét ∆MAB và ∆MDC có:
MA = MD (gt)
∠AMB = ∠DMC (đối đỉnh)
MB = MC (cmt)
⇒ ∆MAB = ∆MDC (c-g-c)
b) Do ∆MAB = ∆MDC (cmt)
⇒ ∠MAB = ∠MDC (hai góc tương ứng)
Mà ∠MAB và ∠MDC là hai góc so le trong
⇒ AB // CD
c) Do MA = MD (gt)
⇒ AD = 2AM
Do ∆ABC vuông tại A (gt)
⇒ AB ⊥ AC
Mà AB // CD (cmt)
⇒ CD ⊥ AC
⇒ ∆CDA vuông tại C
Do ∆MAB = ∆MDC (cmt)
⇒ AB = CD (hai cạnh tương ứng)
Xét hai tam giác vuông: ∆ABC và ∆CDA có:
AC là cạnh chung
AB = CD (cmt)
⇒ ∆ABC = ∆CDA (hai cạnh góc vuông)
⇒ BC = AD (hai cạnh tương ứng)
Mà AD = 2AM (cmt)
⇒ BC = 2AM
d) Xét ∆MAC và ∆MDB có:
MA = MD (gt)
∠AMC = ∠DMB (đối đỉnh)
MC = MB (cmt)
⇒ ∆MAC = ∆MDB (c-g-c)
⇒ ∠MAC = ∠MDB (hai góc tương ứng)
Mà ∠MAC và ∠MDB là hai góc so le trong
⇒ AC // BD
Mà AC ⊥ AB (cmt)
⇒ AB ⊥ BD