Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn tự vẽ hình nha!!!
a) Xét \(\Delta ABM\) và \(\Delta DCM\) có:
MB = MC (M là trung điểm BC (gt))
\(\widehat{AMB} = \widehat{DMC}\)(đối đỉnh)
MA = MD (gt)
\(\Rightarrow\)\(\Delta ABM = \Delta DCM (cgc)\)
b) Vì \(\Delta ABM = \Delta DCM (cmt)\)
\(\Rightarrow\)\(\widehat{BAM} = \widehat{CDM}\) (2 góc tương ứng)
mà 2 góc này nằm ở vị trí so le trong
\(\Rightarrow\) AB // CD
c) Vì \(\Delta ABM = \Delta DCM (cmt)\)
Trả lời:
P/s: Mk chỉ làm đc nhiu đây!!!~^-^
a) Xét tg MAB và tg MDC có:
AM = DM (gt)
MB = MC (suy từ gt)
gAMB = gDMC (đđ)
=> tgMAB = tgMDC (c.g.c)
b) Đề nghị sửa thành: AB = CD và AB // CD.
Vì tgMAB = tgMDC (câu a)
=> AB = CD (2 cạnh tt/ư)
và ABMˆABM^ = DCMˆDCM^( 2 góc t/ư)
mà 2 góc này ở vị trí so l trong nên AB // CD.
c) Nối B với D.
Xét tgAMC và tgDMB có:
AM = DM (gt)
gAMC = gDMB (đđ)
CM = BM (suy từ gt)
=> tgAMC = tgDMB (c.g.c)
=> AC = DB (2 canjht /ư)
Xét tgBAC và tgCDB có:
BA = CD (câu b)
BC chung
AC = DB (c/m trên)
=> tgBAC = tgCDB (c.c.c)
`~Học tốt!~
1 Xét 2 tam giác MAB và tam giác MDC:
Ta thấy:
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
BM=MC (gt)
MA=MD (gt)
Từ các giả thiết trên, suy ra:
\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)
\(a,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\\ b,\Delta MAB=\Delta MDC\\ \Rightarrow\widehat{MCD}=\widehat{MBA}\)
Mà 2 góc này ở vị trí so le trong nên \(AB\text{//}CD\)
\(c,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMC}=\widehat{BMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAC=\Delta MDB\left(c.g.c\right)\\ \Rightarrow AC=BD;\widehat{MCA}=\widehat{MBD}\)
Mà 2 góc này ở vị trí slt nên \(AC\text{//}BD\Rightarrow BD\bot AB\)
\(\left\{{}\begin{matrix}AC=BD\\\widehat{BAC}=\widehat{ABD}=90^0\\AB\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.g.c\right)\\ \Rightarrow BC=AD\\ d,MF\bot BD\Rightarrow MF\text{//}AB\\ BC=AD\\ \Rightarrow AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BM=MC\\ \Rightarrow\Delta AME\text{ cân tại }E\)
Mà ME là trung tuyến nên cũng là đường cao
Do đó \(ME\bot AC\Rightarrow ME\text{//}AB\)
Mà \(MF\text{//}AB\Rightarrow ME\equiv MF\)
Vậy M,E,F thẳng hàng
A B C M D
a) Xét tam giác MAB và tam giác MDC có:
MA=MD (gt)
MB=MC( M là trung điểm BC)
\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh)
=> Tam giác MAB = tam giác MDC
b)
Tam giác MAB = tam giác MDC => \(\widehat{BAM}=\widehat{CDM}\)
Mà hai góc này ở vị trí so le trong
=> AB//CD
c) Ta có AB vuông AC
mag CD // AB
=> CD vuông AC
=> góc ACD bằng 90 độ
a) xét tam giác AMB và tam giác CMD có:
AM = MD (gt)
góc AMB = góc CMD (đối đỉnh)
BM = M (gt)
=> tam giác AMB = tam giác CMD (c.g.c)
=> góc MBA = góc MCD (góc tương ứng)
=> CD // AB
t i c k nhé!! 436356547467
a) Ta có \(MB=MC=\dfrac{BC}{2}\) (Vì M là trung điểm của BC)
Xét \(\Delta MAB\) \(và\) \(\Delta MDC\) \(có\)
\(MB=MC\) (chứng minh trên)
\(\widehat{AMB}=\widehat{DMC}\) (2 góc đối đỉnh)
\(MA=MD\) (giả thiết )
\(\Rightarrow\) \(\Delta MAB\) \(=\) \(\Delta MDC\) \(\left(c-g-c\right)\)
vậy \(\Delta MAB\) \(=\) \(\Delta MDC\)
b)ta có \(\Delta MAB\) \(=\) \(\Delta MDC\) (chứng minh câu a)
\(\Rightarrow\widehat{MAB}=\widehat{MDC}\) (2 góc tương ứng )
hay \(\widehat{DAB}=\widehat{ADC}\) mà 2 góc này là 2 góc so le trong của đường thẳng AD cắt AB và DC
\(\Rightarrow AB//CD\)
vậy \(AB//CD\)
c) ta có \(\Delta MAB=\Delta MDC\) (chứng minh câu a)
\(\Rightarrow AM=MC\) (2 cạnh tương ứng )
mà \(AM=DM\) (giả thiết )
và \(MB=MC\) (chứng minh câu a)
\(\Rightarrow AM=\dfrac{BC}{2}\) hay \(BC=2AM\)
vậy \(BC=2AM\)
d) ta có \(\Delta ABC\) vuông tại A
\(\Rightarrow\widehat{BAC}=90độ\)
\(\Rightarrow AB\perp AC\)
Vì \(AB\perp AC\)
mà \(AB//CD\)
\(\Rightarrow AB\perp BD\)
vậy \(AB\perp BD\)
giúp mink với mn ơi