tam giác ABC có 3 đường cao AD BE CF  cắt nhau tại H

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2021

A B C D E F H 10 8 17

a, Xét tam giác HFB và tam giác HEC 

^BHF = ^CHE ( đối đỉnh )

^HFB = ^HEC = 900

Vậy tam giác HFB ~ tam giác HEC ( g.g ) (1) 

\(\Rightarrow\frac{HB}{HC}=\frac{HF}{HE}\)( tỉ số đồng dạng ) \(\Rightarrow HB.HE=HF.HC\)

b, Xét tam giác HFB và tam giác AEB ta có : 

^B _ chung 

^HFB = ^AEB = 900

Vậy tam giác HFB ~ tam giác AEB (2) 

Từ (1) ; (2) suy ra : tam giác AEB ~ tam giác HEC 

\(\Rightarrow\frac{AE}{HE}=\frac{EB}{EC}\)( tỉ số đồng dạng ) \(\Rightarrow AE.EC=EB.HE\)

a) Xét ΔHFB vuông tại F và ΔHEC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHFB∼ΔHEC(g-g)

Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(HB\cdot HE=HC\cdot HF\)(đpcm)

26 tháng 2 2023

A B C H E F

a)Xét tam giác ABE và tam giác ACF có:

\(\widehat{AFC}=\widehat{AEB}\)

\(\widehat{A}\) chung

=> tam giác ABE và tam giác ACF đồng dạng

\(\Rightarrow\dfrac{AF}{AE}=\dfrac{FC}{BE}=\dfrac{AC}{AB}\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\Rightarrow AF.AB=AE.AC\)

đó vậy là xong ý a rồi những ý khác tương tự. Bạn phải biết cách chọn tỉ số chính xác ở bài toán này nhá :3

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔHFB vuông tại Fvà ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC

=>HF*HC=HB*HE

c: Xét ΔBFH vuông tại F và ΔBEA vuông tại E có

góc FBH chung

=>ΔBFH đồng dạng với ΔBEA

=>BF/BE=BH/BA

=>BF*BA=BH*BE

d: Xét ΔCEH vuông tại E và ΔCFA vuông tại F có

góc ECH chung

=>ΔCEH đồng dạng với ΔCFA

=>CE/CF=CH/CA

=>CE*CA=CF*CH

 

10 tháng 6 2017

A B C D E 1 2 1

Qua B kẻ đường thẳng song song cới AD và cắt tia CA tại E.

Ta có: ^A1=^B1 (So le trong); ^A2=^E (Đồng vị). Mà ^A1=^A2 => ^B1=^E

=> \(\Delta\)BAE cân tại A => AE=AB=2

Sử dụng định lí Ta-lét: \(\frac{AD}{EB}=\frac{AC}{EC}\Rightarrow\frac{1,2}{EB}=\frac{3}{AC+AE}\Rightarrow\frac{1,2}{EB}=\frac{3}{3+2}\Rightarrow\frac{1,2}{EB}=\frac{3}{5}\)

\(\Rightarrow EB=1,2:\frac{2}{5}=\frac{1,2.5}{3}=\frac{6}{3}=2\)\(\Rightarrow AE=AB=EB=2\)

\(\Rightarrow\Delta\)BAE đều \(\Rightarrow\widehat{BAE}=60^0\). Mà ^BAE kề bù với ^BAC

\(\Rightarrow\widehat{BAC}=120^0\).

a: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có

\(\widehat{FHA}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔHFA~ΔHDC

=>\(\dfrac{HF}{HD}=\dfrac{HA}{HC}\)

=>\(HF\cdot HC=HD\cdot HA\left(1\right)\)

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

=>\(HF\cdot HC=HB\cdot HE\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HD=HF\cdot HC=HB\cdot HE\)

c: Xét tứ giác AFHE có \(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

nên AFHE là tứ giác nội tiếp

Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

nên CEHD là tứ giác nội tiếp

Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DFH}=\widehat{DBH}\)(BFHD là tứ giác nội tiếp)

mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ECB}\right)\)

nên \(\widehat{EFH}=\widehat{DFH}\)

=>FH là phân giác của góc EFD

Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DEH}=\widehat{DCH}\)(ECDH là tứ giác nội tiếp)

mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABD}\right)\)

nên \(\widehat{FEH}=\widehat{DEH}\)

=>EH là phân giác của góc FED

Xét ΔFED có

EH,FH là các đường phân giác

Do đó: H là giao điểm của ba đường phân giác trong ΔFED

a) Vì tam giác ABC vuông tại A 

=> BAC = 90 độ

=> Vì K là hình chiếu của H trên AB 

=> HK vuông góc với AB

=> HKA = 90 độ

=> HKA = BAC = 90 độ

=> KH // AI 

=> KHIA là hình thang

Mà I là hình chiếu của H trên AC

=> HIA = 90 độ

=> HIA = BAC = 90 độ

=> KHIA là hình thang cân

b) Vì KHIA là hình thang cân

=> KA = HI 

=  >KI = HA 

Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có

KA = HI

KI = AH 

=> Tam giác KAI = tam giác HIC ( cgv-ch)

=> KIA = ACB ( DPCM)

c) con ý này tớ nội dung chưa học đến  thông cảm

30 tháng 6 2019

Ad ĐỪNG XÓA 

 Học tiếng anh free vừa học vừa chơi đây 

các bạn vào đây đăng kí nhá :   https://iostudy.net/ref/165698

25 tháng 2 2020

a)Kết quả hình ảnh cho Cho tam giác ABC nhọn, các đường cao AD,BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB).a) chứng minhHD/ADNguồn: Lazi.