Giải phương trình  

a, \(\sqrt{x}+\sqrt{2-x}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2022

The common method for the equation \(\sqrt{A}+\sqrt{B}=k\left(A,B,k\ge0\right)\) (k is a constant number) usually is raise each side of the equation to the power of 2:

\(\sqrt{A}+\sqrt{B}=k\) \(\Leftrightarrow\left(\sqrt{A}+\sqrt{B}\right)^2=k^2\) \(\Leftrightarrow A+B+2\sqrt{AB}=k^2\)\(\Leftrightarrow2\sqrt{AB}=k^2-A-B\)

And you raise each side of the equation to the power of 2 again: \(2\sqrt{AB}=k^2-A-B\Leftrightarrow\left(2\sqrt{AB}\right)^2=\left(k^2-A-B\right)^2\) \(\Leftrightarrow4AB=\left(k^2-A-B\right)^2\) 

And now we have eliminate all of the square roots and make it easier to solve.

But, I will give you a new method to solve this type of the equation.

a) \(\sqrt{x}+\sqrt{2-x}=2\) \(\left(0\le x\le2\right)\)

We can easily find that \(x=1\). When \(x=1\)\(\left\{{}\begin{matrix}\sqrt{x}=1\\\sqrt{2-x}=1\end{matrix}\right.\). or \(\left\{{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{2-x}-1=0\end{matrix}\right.\) So, we have to do something like this:

\(\sqrt{x}+\sqrt{2-x}=2\Leftrightarrow\left(\sqrt{x}-1\right)+\left(\sqrt{2-x}-1\right)=0\) 

Notice that \(\sqrt{x}+1\ne0\) and \(\sqrt{2-x}+1\ne0\), we now can write the equation as below:

\(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\left(\sqrt{2-x}-1\right)\left(\sqrt{2-x}+1\right)}{\sqrt{2-x}+1}=0\) 

\(\Leftrightarrow\dfrac{\left(\sqrt{x}\right)^2-1}{\sqrt{x}+1}+\dfrac{\left(\sqrt{2-x}\right)^2-1}{\sqrt{2-x}+1}=0\)

\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{1-x}{\sqrt{2-x}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{2-x}+1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(take\right)\\\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{2-x}+1}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x}=\sqrt{2-x}\Leftrightarrow x=1\)

Therefore, the equation a) has the root \(x=1\)

b)  \(0\le x\le1\)

Notice that \(x\) can be either equal to 0 or 1

So consider \(x=1\). Then, we have \(\sqrt{x}=1\Leftrightarrow\sqrt{x}-1=0\) and \(\sqrt{1-x}=0\). Therefore, we have to rewrite the equation like this:

\(\sqrt{1-x}+\sqrt{x}=1\Leftrightarrow\dfrac{1-x}{\sqrt{1-x}}+\left(\sqrt{x}-1\right)=0\) \(\Leftrightarrow\dfrac{1-x}{\sqrt{1-x}}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=0\)

\(\Leftrightarrow\dfrac{1-x}{\sqrt{1-x}}+\dfrac{x-1}{\sqrt{x}+1}=0\) \(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{1-x}}-\dfrac{1}{\sqrt{x}+1}\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\left(take\right)\\\dfrac{1}{\sqrt{1-x}}=\dfrac{1}{\sqrt{x}+1}\end{matrix}\right.\)or \(\left[{}\begin{matrix}x=1\\\sqrt{1-x}=\sqrt{x}+1\left(\cdot\right)\end{matrix}\right.\)

And now, use the same method to solve \(\left(\cdot\right)\)

c) We have \(x\ge0\)

We can easily see that \(x=4\), so \(\sqrt{x+5}=3\Leftrightarrow\sqrt{x+5}-3=0\) and \(\sqrt{x}=2\Leftrightarrow\sqrt{x}-2=0\) . Therefore, we can rewrite the equation as below:

\(\sqrt{x+5}-\sqrt{x}=1\Leftrightarrow\left(\sqrt{x+5}-3\right)-\left(\sqrt{x}-2\right)=0\) \(\Leftrightarrow\dfrac{\left(\sqrt{x+5}-3\right)\left(\sqrt{x+5}+3\right)}{\sqrt{x+5}+3}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=0\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x+5}\right)^2-9}{\sqrt{x+5}+3}+\dfrac{\left(\sqrt{x}\right)^2-4}{\sqrt{x}+2}=0\)

\(\Leftrightarrow\dfrac{x-4}{\sqrt{x+5}+3}+\dfrac{x-4}{\sqrt{x}+2}=0\)

\(\Leftrightarrow\left(x-4\right)\left(\dfrac{1}{\sqrt{x+5}+3}+\dfrac{1}{\sqrt{x}+2}\right)=0\)

\(\Leftrightarrow...\)

Notice that \(\dfrac{1}{\sqrt{x+5}+3}+\dfrac{1}{\sqrt{x}+2}\) can't be equal to 0. So this equation only have the root \(x=4\)

d) Similar to the equations above.

 

8 tháng 7 2022

Ý a, chỗ ( x-1 ) \(\dfrac{1}{\sqrt{x}+1}\) - \(\dfrac{1}{\sqrt{2-x}+1}\) = 0 tại sao lại làm mất được (x-1) vậy ạ ? 

19 tháng 7 2018

ồ cuk khó nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 
12 tháng 9 2018

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)

a)thay \(x=2\sqrt{2}\)vào a ra có

\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)

\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)

Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

7 tháng 10 2016

khó quá

20 tháng 11 2016

khó quá vợt xa sức học của mk

14 tháng 8 2015

\(x^2+2x\sqrt{x-\frac{1}{x}}+3x+1=0\)

ĐK: \(x-\frac{1}{x}\ge0\)

\(+x=0\text{ thì }pt\text{ thành }0=1\text{ (vô lí)}\)

\(+\text{Xét }x\ne0;\text{ }pt\Leftrightarrow x+2\sqrt{x-\frac{1}{x}}=3+\frac{1}{x}\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)+2\sqrt{x-\frac{1}{x}}-3=0\)

Đặt \(\sqrt{x-\frac{1}{x}}=t\ge0;\text{ }pt\text{ thành }t^2+2t-3=0\)

14 tháng 8 2015

\(c\text{) }x^2+\sqrt[3]{x^4-x^2}=2x+1\)

\(\Leftrightarrow\left(x^2-1\right)-2x+\sqrt[3]{x^2\left(x^2-1\right)}=0\)

Đặt \(\sqrt[3]{x^2-1}=a;\text{ }\sqrt[3]{x}=b\)

\(pt\text{ trở thành }a^3-2b^3+ab^2=0\Leftrightarrow\left(a-b\right)\left(a^2+ab+2b^2\right)=0\)

\(\Leftrightarrow a=b\text{ hoặc }\left(a+\frac{b}{2}\right)^2+\frac{7b^2}{4}=0\)

\(a=b\text{ thì }\sqrt[3]{x^2-1}=\sqrt[3]{x}\Leftrightarrow x^2-1=x\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)

\(\left(a+\frac{b}{2}\right)^2+\frac{7b^2}{4}=0\Leftrightarrow b=0\text{ và }a+\frac{b}{2}=0\Leftrightarrow a=b=0\)

Suy ra \(\sqrt[3]{x^2-1}=0\text{ và }\sqrt[3]{x}=0\Leftrightarrow x=0\text{ và }x^2-1=0\text{ (vô nghiệm)}\)

20 tháng 4 2016

giải phương trình$\sqrt{x}+\sqrt{1-x}+2\sqrt{x-x^2}-2\sqrt[4]{x-x^2}=1$√x+√1−x+2√x−x2−24√x−x2=1$\sqrt{x^2+10x+7}=3\sqrt{x+3}+2\sqrt{x+7}-6$√x2+10x+7=3√x+3+2√x+7−6$\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x-3x+12}$3√x+1+3√x+2=1+3√x−3x+12$\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8$(4x+2)√x+8=3x2+7x+8$x+4\sqrt{5-x}=4\sqrt{x-1}+\sqrt{-x^2+6x-5}+1$x+ 

ải phương trình

$\sqrt{x}+\sqrt{1-x}+2\sqrt{x-x^2}-2\sqrt[4]{x-x^2}=1$x+1x+2xx224xx2=1

4√5−x=4√x−1+√−x2+6x−5+1

28 tháng 2 2016

Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b 

a+b=x

ab=1

Rồi tính lần lượt a+bbằng ẩn x hết 

và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra 

13 tháng 10 2015

a, bình phương rồi phân tích là ra

b, nhân chéo rồi phá ngoặc

13 tháng 10 2015

\(\sqrt{x^2-9}-5\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-5\sqrt{x+3}=0\)

ĐK: \(x+3\ge0\Leftrightarrow x\ge-3\) và  \(x-3\ge0\Leftrightarrow x\ge3\) suy ra điều kiện là X >=3

PT \(\Leftrightarrow\sqrt{\left(x+3\right)}\left(\sqrt{x+3}-5\right)=0\Leftrightarrow\sqrt{x+3}=0hoặc\left(\sqrt{x+3}-5\right)=0\)

+) \(\sqrt{x+3}=0\Leftrightarrow x=-3loai\)

+) \(\sqrt{x-3}-5=0\Leftrightarrow\sqrt{x-3}=5\Leftrightarrow x-3=25\Leftrightarrow x=28\)

Vậy x = 28

\(\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}+3}\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)Điều kiện x>=0

\(\Leftrightarrow x+\sqrt{x}-6=x-1\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\)

Vậy x = 25