Dùng phép chứng minh phản đảo để chứng minh mệnh đề sau: 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

1434000000 nha bạn

19 tháng 1 2022

TL :

Gọi số cạnh của khối đa diện là \(C\), số đỉnh là \(Đ\). Vì mỗi đỉnh là đỉnh chung của ba cạnh và mỗi cạnh có \(2\)đỉnh nên \(3Đ=2C\)do đó \(Đ\) là sỗ chẵn.

HT

19 tháng 1 2022

Gọi số cạnh của khối đa diện là C, số đỉnh là Đ. Vì mỗi đỉnh là đỉnh chung của ba cạnh và mỗi cạnh có 2 đỉnh nên 3Đ=2C do đó Đ là sỗ chẵn.

Bài 1: Có tất cả bao nhiêu giá trị của m nguyên để hàm số:y = x8 + (m - 2)x5 - (m2 - 4)x4 + 1 đạt cực tiểu tại x = 0?(Mã đề 123, đề thi năm 2018).Bài giải:Với đề thi THPT quốc gia môn Toán, đây là một trong những câu khó. Không nhiều các bạn học sinh giải được đề toán trên. Đây là một hàm số bậc 8, hoàn toàn khác với những hàm số thông dụng được học trên lớp, để giải được...
Đọc tiếp

Bài 1: Có tất cả bao nhiêu giá trị của m nguyên để hàm số:

y = x8 + (m - 2)x5 - (m2 - 4)x4 + 1 đạt cực tiểu tại x = 0?

(Mã đề 123, đề thi năm 2018).

Bài giải:

Với đề thi THPT quốc gia môn Toán, đây là một trong những câu khó. Không nhiều các bạn học sinh giải được đề toán trên. Đây là một hàm số bậc 8, hoàn toàn khác với những hàm số thông dụng được học trên lớp, để giải được bài này, các bạn cần phải sử dụng kiến thức từ định nghĩa và tính chất của cực trị hàm số bất kì. Ta có:

y' = 8x7 + 5(m - 2)x4 - 4(m2 - 4)x3 + 1

Hàm đạt cực tiểu tại x = 0 thì y'(x) = 0 và y'(x) đổi dấu từ âm sang dương khi x chạy qua điểm 0. Từ đó ta tương đương với số hạng chứa x có lũy thừa thấp nhất có hệ số khác 0 trong biểu thức y’ là lũy thừa bậc lẻ, hệ số dương.

Có nghĩa là :

–4(m2 - 4) > 0  và m - 2 = m² – 4 = 0

⇔ –2 < m < 2 hoặc m = 2

⇒ m = {-1, 0, 1, 2 }

Tóm lại ta nhận được 4 giá trị của m là số nguyên của m để hàm số đạt cực tiểu tại x = 0.

Bạn đọc có thể nhận thấy không hề đơn giản chút nào để giải được bài tập tìm cực trị hàm số trên. Vì thế chúng ta hãy cùng luyện tập thật nhiều và chắc các dạng bài cực trị trên. Từ đó với kĩ năng và kiến thức trên các em mới giải nhanh được câu hỏi tương tự.

giúp mik vs

0
10 tháng 11 2021

Giả sử đa diện (H)(H) có các đỉnh là A1,…AdA1,…Ad, gọi m1,…mdm1,…md lần lượt là số các mặt của (H)(H) nhận chúng là đỉnh chung, ở đó m1,…mdm1,…md là những số lẻ.

Như vậy mỗi đỉnh AkAk có mkmk cạnh đi qua.

Ta có: đỉnh A1A1 có m1m1 cạnh đi qua.

đỉnh A2A2 có m2m2 cạnh đi qua.

...

đỉnh AdAd có mdmd cạnh đi qua.

Do đó số các cạnh (có thể trùng nhau) của đa diện là m1+m2+...+mdm1+m2+...+md.

Tuy nhiên, do mỗi cạnh là cạnh chung của đúng hai mặt nên số cạnh ở trên được đếm hai lần.

Vậy số cạnh thực tế của (H)(H) bằng

c=12(m1+m2+...+md)c=12(m1+m2+...+md)      

Vì cc là số nguyên, m1,…mdm1,…md là những số lẻ nên dd phải là số chẵn.

Ví dụ : Hình chóp ngũ giác.

Đỉnh S là đỉnh chung của 5 mặt, tất cả các đỉnh còn lại là đỉnh chung của 3 mặt, hình chóp ngũ giác có 6 đỉnh

giup mình cày Sp vơi

a

=>(n+2)=5 :.n+2

=>5:. n+2

=>n+2 E (1,5)

th1

N+2=1

th2 tựlamf

20 tháng 10 2019

x không có giá trị đúng bởi vì trong bài ghi n ko phải x 

 Tổng hợp lại bài toán với x là số lần cân     x là số tự nhiên x≥6 ta luôn có số đồng xu tối đa xác định đc qua x lần cân là: 121.(3 mũ x-5) -2 . Thì tìm đc 1 đồng 1 lỗi   bài đầu tiên :có 13 đồng tiền trong đó có 1 đồng bị lỗi không biết nặng hơn hay nhẹ hơn đồng tiền còn lại qua 3 lần cân thăng bằng tìm gia đồng bị lỗi. Lời giải:Ta đánh đấu từng đồng bằng các số...
Đọc tiếp

 

Tổng hợp lại bài toán với x là số lần cân     x là số tự nhiên x≥6 ta luôn có số đồng xu tối đa xác định đc qua x lần cân là: 121.(3 mũ x-5) -2 . Thì tìm đc 1 đồng 1 lỗi 
 

 bài đầu tiên :có 13 đồng tiền trong đó có 1 đồng bị lỗi không biết nặng hơn hay nhẹ hơn đồng tiền còn lại qua 3 lần cân thăng bằng tìm gia đồng bị lỗi. Lời giải:

Ta đánh đấu từng đồng bằng các số từ 1 đến 13 , ta chia thành 3 nhóm nhóm A là nhóm có số đồng từ số 1 đến số 4 , nhóm B có số đồng từ 5 đến 8 , nhóm C có số đồng từ 9 đến 13 , lần cân thứ nhất: ta cho nhóm A cân với nhóm B nếu cân thằng bằng thì nhóm C sẽ có 1 đồng bị lỗi , ta cho đồng 12 , 13 gia ngoài, cho thêm đồng số 1 vào cùng với đồng số 9 cho lên cân vơi đồng số 11 và đồng số 10 nếu cân thăng bằng thì đồng số 1 2 và đồng số 13 có 1 đồng bị lỗi . Ta cân 1 trong 2 đồng trên vơi bất kể đồng còn lại nào thì có thể tìm gia được đồng bị lỗi, nếu cân lệnh ta gi nhớ xem nhóm nào nặng hơn , vậy là trong 3 đồng 9, 10, 11 có 1 đồng bị lỗi , lần cân thứ 3 ta cho đồng số 10 cân với đồng số 11 nếu cân thăng bằng thì đồng số 9 bị lỗi còn cân lệch thì đồng số 11 và 10 có 1 đồng bị lỗi ta lấy 2 đồng cân vơi nhau và để ý xem đồng nào cùng nặng hoặc cùng nhẹ như nhóm này ở lần cân số 2 là đồng bị lỗi.
Quay chở lại trường hợp cân nhóm A với Nhóm B nếu cân không thăng bằng ta gi nhớ xem nhóm nào nặng hơn. Ta bỏ đồng số 4 của nhóm A và đồng số 7,8 của nhóm B gia ngoài. Cho đồng số 3 sang nhóm B đồng số 6 sang nhóm A . Vậy nhóm A có đồng 1 ,2 ,6 nhóm B có đồng 3 ,5 và đồng số 9 cho thêm vào không bị lỗi. Nếu cân thăng bằng thì 3 đồng 4 ,7,8 có đồng lỗi, ta lấy đồng 7 cân với đồng 8 cũng suy luận như nhóm C là tìm đc đồng bị lỗi. Nếu cân đảo chiều thì đồng 3 hoặc đồng 6 bị lỗi, còn lần cân còn lại tìm gia được đồng nào bị lỗi. Nếu cân vẫn lệch như lần cân số 1 thì 3 đồng 1,2,5 có đồng bị lỗi ta cũng cân đồng số 1 với đồng số 2 như cách cân ở nhóm C có thể tìm gia đồng bị lỗi.
từ dữ niệu bài toán ta có :
 Với 3 lần cân ta cân được tối đa 13 đồng tiền , 
 Với 4 lần cân ta cân được tối đa là 39 đồng tiền ( 1 tuần trc mình nhầm to cái này) vì đơn giản là 39 đông chia thành 13 cân vơi13 , nếu thăng bằng thì 13 đồng còn lại bị lỗi và với 3 lần cân còn lại tìm đc đồng bị lỗi trong 13 đồng như là làm, còn cân lệch thì chia thành 3 nhóm 9,9,8 lấy ghép mỗi bên bên này 4 thì bên kia 5  có 3 khả năng xẩy ra ứng với 3 nhóm có số đồng là 9 hoặc 9, hoặc 8 bị lỗi , nếu 9 đồng bị lỗi thì lại chị làm 3,3,3 khác với bài toán 13 đông xu ta chia đc 3,3,2 do khi cân 2 nhóm số đồng xu cộng lại không thể lẻ đc nhầm tổng quát ở chỗ này
Với 5 lần cân thì ta được số đồng tối đa là 119 , lấy 40 đồng cân với 40 đông , cân thằng bằng thì 39 đông còn lại bị lỗi với 4 lần cân còn lại tìm đc 1 đồng bị lỗi như trên
Với 6 lần cân ta đc số đồng tối đa là 361 đồng lấy 121 cân với 121 đồng nếu cân thằng bằng thì 119 đồng còn lại bị lỗi còn cân lệch thì 242 đồng bị lỗi cho thêm 1 đồng vào ta chia thành 3 nhóm mỗi nhóm có 81 đồng sắp xếp sao cho mỗi bên có 40 hoặc 41 đồng của của lần lượt 2 nhóm trên .
Với 7 lần ta có số đồng tối đa xác định đc là 1087
 với 8 lần cân ta có số đồng tối đa xác định được 1 đồng bị lỗi là :3265
từ đó tổng hợp bài toán :
Tổng hợp lại bài toán với x là số lần cân     x là số tự nhiên x≥6 ta luôn có số đồng xu tối đa xác định đc qua x lần cân là: 121.(3 mũ x-5) -2 . Thì tìm đc 1 đồng 1 lỗi 

Bài này có giống bài toán của  giáo sư toán học và cộng sự chứng minh năm 1997 không ạ. E chỉ biết lick bài viêt thôi ạ.   Dựa vào giữ niệu bài toán thì chứng minh cũng không khó ạ. https://diendantoanhoc.net/topic/17808-bai-toan-tim-d%E1%BB%93ng-xu-gi%E1%BA%A3/

 

0
1 tháng 5 2016

 Để A=n-1/n-2 là số nguyên 

Thì : n-1 chia hết cho n -2 

Hay : (n-2)+1 chia hết cho n -2 

Mà : n-2 chia hết cho n -2 

Nên : 1 chia hết cho n -2 

=> n-2 thuộc Ư(1)={ 1 , -1 }

Vậy : n { 3 , 2 }