Bài 3- Mã đề 124 đề thi Toán năm 2017

<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

Bài giải:

Ta có y’ = x² – 2mx + m² – 4; y” = 2x - 2m

Hàm số đạt cực đại tại x = 3 khi và chỉ khi y'(3) = 0 , y”(3) < 0.

⇔ 9 - 6m + m² – 4 = 0 và 6 - 2m < 0

⇔ m² – 6m + 5 = 0 ; m < 3

⇔ m = 1 hoặc m = 5; m < 3

⇔ m = 1 thoả mãn

Đáp án đúng là B.

tích cho mik nha.

28 tháng 5 2021

\(y=\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\)

\(y'=x^2-2mx+m^2-4\)

\(y''=2x-2m\)

Hàm số đạt cực đại tại \(x=3\) khi:

\(\hept{\begin{cases}y'\left(3\right)=0\\y''\left(3\right)< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}3^2-2m.3+m^2-4=0\\2.3-2m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=1\left(h\right)m=5\\m>3\end{cases}}\Leftrightarrow m=5\)

12 tháng 5 2021

? cái j vậy

6 tháng 7 2021

Bài giải:

Để có thể giải quyết được bài toán trên, bạn đọc cần tìm được 2 điểm cực trị của hàm số và viết phương trình đường thẳng đi qua chúng.

Hàm số y =  x³ - 3x² + 1 có y’ = 3x² - 6x = 0 ⇔ x= 0 hoặc x = 2

x = 0 ⇒  y = 1

x = 2 ⇒  y = -3

⇒   Hàm số có hai điểm cực trị A (0;1), B (2; -3). Đường thẳng đi qua hai điểm cực trị của hàm số có phương trình 2x + y – 1 = 0.

Đường thẳng (2m - 1)x - y + 3 + m = 0 vuông góc với đường thẳng

2x + y – 1 = 0  ⇔   hai véc-tơ pháp tuyến vuông góc với nhau.

a1. a2 + b1.b2 = 0 ⇔ (2m - 1) 2 + (-1)1 = 0  ⇔ 4m - 2 - 1 = 0 ⇔ m = 3/4.

Đáp án đúng là B.

tích cho mik nha.

Bài 1: Có tất cả bao nhiêu giá trị của m nguyên để hàm số:y = x8 + (m - 2)x5 - (m2 - 4)x4 + 1 đạt cực tiểu tại x = 0?(Mã đề 123, đề thi năm 2018).Bài giải:Với đề thi THPT quốc gia môn Toán, đây là một trong những câu khó. Không nhiều các bạn học sinh giải được đề toán trên. Đây là một hàm số bậc 8, hoàn toàn khác với những hàm số thông dụng được học trên lớp, để giải được...
Đọc tiếp

Bài 1: Có tất cả bao nhiêu giá trị của m nguyên để hàm số:

y = x8 + (m - 2)x5 - (m2 - 4)x4 + 1 đạt cực tiểu tại x = 0?

(Mã đề 123, đề thi năm 2018).

Bài giải:

Với đề thi THPT quốc gia môn Toán, đây là một trong những câu khó. Không nhiều các bạn học sinh giải được đề toán trên. Đây là một hàm số bậc 8, hoàn toàn khác với những hàm số thông dụng được học trên lớp, để giải được bài này, các bạn cần phải sử dụng kiến thức từ định nghĩa và tính chất của cực trị hàm số bất kì. Ta có:

y' = 8x7 + 5(m - 2)x4 - 4(m2 - 4)x3 + 1

Hàm đạt cực tiểu tại x = 0 thì y'(x) = 0 và y'(x) đổi dấu từ âm sang dương khi x chạy qua điểm 0. Từ đó ta tương đương với số hạng chứa x có lũy thừa thấp nhất có hệ số khác 0 trong biểu thức y’ là lũy thừa bậc lẻ, hệ số dương.

Có nghĩa là :

–4(m2 - 4) > 0  và m - 2 = m² – 4 = 0

⇔ –2 < m < 2 hoặc m = 2

⇒ m = {-1, 0, 1, 2 }

Tóm lại ta nhận được 4 giá trị của m là số nguyên của m để hàm số đạt cực tiểu tại x = 0.

Bạn đọc có thể nhận thấy không hề đơn giản chút nào để giải được bài tập tìm cực trị hàm số trên. Vì thế chúng ta hãy cùng luyện tập thật nhiều và chắc các dạng bài cực trị trên. Từ đó với kĩ năng và kiến thức trên các em mới giải nhanh được câu hỏi tương tự.

giúp mik vs

0
DD
28 tháng 5 2021

\(y=x^3-3x^2+1\)

\(y'=3x^2-6x\)

Ta có: \(x^3-3x^2+1=\left(3x^2-6x\right)\left(\frac{1}{3}x-\frac{1}{3}\right)+\left(-2x+1\right)\)

Do đó đường thẳng đi qua hai điểm cực trị của hàm số \(y=x^3-3x^2+1\)là \(y=-2x+1\).

Do đó \(2m-1=\frac{1}{2}\Leftrightarrow m=\frac{3}{4}\).

26 tháng 5 2017

Bạn giải : y'(2)=0 và y''(2)>0 bạn nhé

2 tháng 6 2017

mình thắc mắc là tại y'(2) mình thấy Δ < 0 tức là m tại y' vô nghiệm nên ko có m để hàm có cực trị = 2 nên ta phải tìm tiếp y'' đúng ko? Hay là bài này ko có m vậy mọi ng?

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

AH
Akai Haruma
Giáo viên
28 tháng 3 2020

Lời giải:

Hàm số có cực đại $(x_1,y_1)$, cực tiểu $(x_2,y_2)$ nằm về bên phải trục tung tương đương với\(y'=2x^2+2(m+1)x+m^2+4m+3=0\) có 2 nghiệm phân biệt $x_1,x_2$ đều dương.

Điều này xảy ra khi: \(\left\{\begin{matrix} \Delta'=(m+1)^2-2(m^2+4m+3)>0\\ x_1+x_2=-(m+1)>0\\ x_1x_2=\frac{m^2+4m+3}{2}>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (m+1)(m+5)< 0\\ m+1< 0\\ (m+1)(m+3)>0\end{matrix}\right.\Rightarrow -5< m< -3\). Đáp án B