Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng
d m x = 1 + 2 t y = 1 - m t , t ∈ R z = - 2 + m t đi qua điểm cố định M ( 1;0;-2 )
Vậy khoảng cách từ O tới d m là h < O M để khoảng cách này đạt giá trị lớn nhất bằng OM
⇒ O M 1 ; 0 ; - 2 ⊥ u 2 ; 1 ; - m ; m ⇔ 2 - 2 m = 0 ⇒ m = 1
Đáp án cần chọn là C
Ta có : góc yAz = góc zAB ( Az phân giác) (1)
Do Ay // BC nên góc yAz = góc ACB ( 2 góc so le trong ) (2)
Từ (1) và (2) suy ra Góc zAB = góc ACB
=> Tam giác BAC cân tại B
=> AB = BC = 5cm ( 2 cạnh bên của tam giác cân BAC)
Theo đề
=> \(\frac{3x}{4}+5-\frac{2x}{3}+4+\frac{x}{3}-3=\frac{x}{3}+4+\frac{x}{6}+1\)
=> \(\frac{3x}{4}-\frac{2x}{3}+\frac{x}{3}-\frac{x}{3}-\frac{x}{6}=4+1+3-4-5\)
=> \(\frac{9x-8x-2x}{12}=-1\)
=> -1x = -12
=> x = -12 : (-1)
=> x = 12