Giải phương trình lượng giác biến đổi về dạng a.\sin +b.\cos x=c...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

           1.Khẳng định nào sau đây là đúng?A. Điểm đối xứng của A(–2; 1) qua gốc tọa độ O là (1; –2)B. Điểm đối xứng của A(–2; 1) qua trục tung là (2; 1)C. Điểm đối xứng của A(–2; 1) qua trục hoành là (–2; –1)D. Điểm đối xứng của A(–2; 1) qua đường phân giác của góc xOy là (1; –2)                                                                                2.Cho...
Đọc tiếp

           1.Khẳng định nào sau đây là đúng?

  • A. Điểm đối xứng của A(–2; 1) qua gốc tọa độ O là (1; –2)
  • B. Điểm đối xứng của A(–2; 1) qua trục tung là (2; 1)
  • C. Điểm đối xứng của A(–2; 1) qua trục hoành là (–2; –1)
  • D. Điểm đối xứng của A(–2; 1) qua đường phân giác của góc xOy là (1; –2)                                                                                2.Cho các điểm M(m; -2), N(1; 4), P(2; 3). Giá trị của m để M, N, P thẳng hành là:
  • A. m = – 7
  • B. m = – 5
  • C. m= D. m = 5                                                                                                                                                                                    3.Cho vectơ \underset{a}{\rightarrow}\underset{b}{\rightarrow} và các số thực m, n, k. Khẳng định nào sau đây là đúng?
  • A. Từ đẳng thức m\underset{a}{\rightarrow} = n\underset{a}{\rightarrow} suy ra m = n
  • B. Từ đẳng thức k\underset{a}{\rightarrow} = k\underset{b}{\rightarrow} luôn suy ra \underset{a}{\rightarrow} = \underset{b}{\rightarrow}
  • C. Từ đẳng thức k\underset{a}{\rightarrow} = k\underset{b}{\rightarrow} luôn suy ra k = 0
  • D. Từ đẳng thức m\underset{a}{\rightarrow} = n\underset{a}{\rightarrow} và \underset{a}{\rightarrow}0→ suy ra m = n
0
HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Bội của 3: 75, 78, 90, 120, 231

Bội của 5: 65, 75, 90, 100, 120

Vừa là bội của 3, vừa là bội của 5: 75, 90, 120.

Không là bội của 3 và không là bội của 5: 82, 94

29 tháng 7 2022

a)     (-\infty ; \, 2) \cap (-1; \, +\infty)(;2)(1;+)=(-1;2)

b)     (1;6∪ [4;8)=(-1;8]

c)      (;5] (5;1)={-5}
Bài 1. (2 điểm)a) Thực hiện phép tínhb) Tìm các giá trị của m để hàm số y = (√m - 2)x + 3 đồng biến.Bài 2. (2 điểm)a) Giải phương trình: x4 - 24x2 - 25 = 0.b) Giải hệ phương trình:{2x - y = 29x + 8y = 34Bài 3. (2 điểm)Cho phương trình ẩn x: x2 - 5x + m - 2 = 0 (1)a) Giải phương trình (1) khi m = −4 .b) Tìm m để phương trình (1) có hai nghiệm dương phân biệt x1; x2 thoả mãn hệ thứcBài 4. (4 điểm)Cho...
Đọc tiếp

Bài 1. (2 điểm)

a) Thực hiện phép tính

b) Tìm các giá trị của m để hàm số y = (√m - 2)x + 3 đồng biến.

Bài 2. (2 điểm)

a) Giải phương trình: x4 - 24x2 - 25 = 0.

b) Giải hệ phương trình:{2x - y = 2
9x + 8y = 34

Bài 3. (2 điểm)

Cho phương trình ẩn x: x2 - 5x + m - 2 = 0 (1)

a) Giải phương trình (1) khi m = −4 .

b) Tìm m để phương trình (1) có hai nghiệm dương phân biệt x1; x2 thoả mãn hệ thức

Bài 4. (4 điểm)

Cho nửa đường tròn (O; R) đường kính BC. Lấy điểm A trên tia đối của tia CB. Kẻ tiếp tuyến AF của nửa đường tròn (O) (với F là tiếp điểm), tia AF cắt tiếp tuyến Bx của nửa đường tròn tại D. Biết AF = 4R/3.

a) Chứng minh tứ giác OBDF nội tiếp. Định tâm I đường tròn ngoại tiếp tứ giác OBDF.

b) Tính Cos góc DAB.

c) Kẻ OM ⊥ BC (M ∈ AD). Chứng minh BD/DM - DM/AM = 1.

d) Tính diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O) theo R.

Bài 1: (2điểm)

a) Thực hiện phép tính:

b) Hàm số y = (√m - 2)x + 3 đồng biến

<=> m > 4

2
13 tháng 3 2017

Bài 2

a) \(x^4-24x^2-25=0\) ( 1 )

Đặt \(t=x^2\) ( điều kiện \(t\ge0\) )

\(pt\left(1\right)\Leftrightarrow t^2-24t-25=0\)

\(\Delta=b^2-4ac\)

\(\Delta=676\)

\(\Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{24+\sqrt{676}}{2}=25\left(nhận\right)\\t_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{24-\sqrt{676}}{2}=-1\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2=25\)

\(\Rightarrow x=\pm5\)

b)

\(\left\{{}\begin{matrix}2x-y=2\\9x+8y=34\end{matrix}\right.\)

Xét \(2x-y=2\)

\(\Rightarrow x=\dfrac{2+y}{2}\)

Ta có \(9x+8y=34\)

\(\Leftrightarrow\dfrac{9\left(2+y\right)}{2}+8y=34\)

\(\Leftrightarrow\dfrac{18+9y}{2}+8y=34\)

\(\Leftrightarrow\dfrac{18+25y}{2}=34\)

\(\Leftrightarrow18+25y=68\)

\(\Rightarrow y=2\)

\(\Rightarrow x=\dfrac{y+2}{2}=2\)

Vậy \(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

13 tháng 3 2017

Bài 3

a) \(x^2-5x+m-2=0\)

Thay \(m=-4\) vào phương trình

\(\Rightarrow x^2-5x-6=0\)

\(\Delta=b^2-4ac\)

\(\Delta=49\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+\sqrt{49}}{2}=6\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-\sqrt{49}}{2}=-1\end{matrix}\right.\)

b )

\(x^2-5x+m-2=0\)

\(\Delta=b^2-4ac\)

\(\Delta=33-4m\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}P=x_1+x_2=\dfrac{-b}{a}\\S=x_1x_2=\dfrac{c}{a}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P=x_1+x_2=5\\S=x_1x_2=m-2\end{matrix}\right.\)

Để phương trình có 2 nghiệm dương phân biệt

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}33-4m>0\\m-2>0\\5>0\left(đúng\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{33}{4}\\m>2\end{matrix}\right.\)

\(\Rightarrow2< m< \dfrac{33}{4}\)

Ta có \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{\sqrt{x_1}+\sqrt{x_2}}{\sqrt{x_1x_2}}=\dfrac{3}{2}\)

\(\Leftrightarrow\left(\dfrac{\sqrt{x_1}+\sqrt{x_2}}{\sqrt{x_1x_2}}\right)^2=\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}{x_1x_2}=\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{x_1+x_2+2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{5+\sqrt{m-2}}{m-2}=\dfrac{9}{4}\)

\(\Leftrightarrow20+4\sqrt{m-2}=9m-18\)

\(\Leftrightarrow4\sqrt{m-2}=9m-38\)

\(\Leftrightarrow64m-128=\left(9m-38\right)^2\)

\(\Leftrightarrow64m-128=81m^2-684m+1444\)

\(\Leftrightarrow81m^2-748m+1572=0\)

\(\Delta=b^2-4ac\)

\(\Delta=50176\)

\(\Rightarrow\left\{{}\begin{matrix}m_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{748+\sqrt{50176}}{162}=6\\m_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{748-\sqrt{50176}}{162}=\dfrac{262}{81}\end{matrix}\right.\)

\(2< m< \dfrac{33}{4}\)

\(\Rightarrow m\in\left\{6;\dfrac{262}{81}\right\}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

P

 

\(\overline P \)

 

Dơi là một loài chim

Sai

Dơi không phải là một loài chim

Đúng

\(\pi \) không phải là một số hữu tỉ

Đúng

\(\pi \) là một số hữu tỉ

Sai

\(\sqrt 2  + \sqrt 3  > \sqrt 5 \)

Đúng

\(\sqrt 2  + \sqrt 3  \le \sqrt 5 \)

Sai

\(\sqrt 2 .\sqrt {18}  = 6\)

Đúng

\(\sqrt 2 .\sqrt {18}  \ne 6\)

Sai

Chú ý:

Hai mệnh đề cùng cặp luôn có một mệnh đề đúng và một mệnh đề sai.

Nếu P đúng thì \(\overline P \) sai và ngược lại.

14 tháng 8 2021

1. Định lí Pytago

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

ΔABC vuông tại A thì ta có:

AB2+AC2=BC2

a2+b2=c2

Daya là định Py ta go Về tam giác vuông Hok tốt
12 tháng 6 2023

Đáp án hay, và ngắn gọn, dễ hiểu. Em cám ơn cô ạ.

12 tháng 6 2023

oà, mặc dầu năm sau nữa em mới thi lớp 10 nhưng nhìn cái kiểu này...chắc chắn em sẽ "cóp". Thank you cô Ngọc!

13 tháng 8 2021

700 bạn nhé

9 tháng 9 2021

70o nha

chúc bạn học tốt