Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)
1)Tính
S=1+2+3+.......+(m-1)
2)cho a nguyên tố lớn hơn 3 chứng tỏ :
A=2+(a+2)(a+1) chia ht cho 12
\(M=2+2^2+2^3+...+2^{20}\)
\(M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(M=2\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)
\(M=2\cdot15+...+2^{17}\cdot15\)
\(M=15\cdot\left(2+...+2^{17}\right)⋮15\left(đpcm\right)\)
Ta có ;
M = 2 + 22+23+....+220
M = ( 2 + 22+23+24 ) + ....+ ( 217 + 218 + 219 + 220)
M = 2(1 + 2 + 22 + 23)+....+217(1 + 2 + 22 + 23 )
M = 2 . 15 + .... + 217 . 15
Vì 15 chia hết cho 15
Nên 2. 5 + ...+217 . 15
Vậy nên M chia hết cho 15
M = 2 + 22 + 23 + ... + 220
M = ( 2 + 22 + 23 + 24 ) + ... + ( 217 + 218 + 219 + 220 )
M = 5 ( 1 + 4 + 10 ) + ... + 5 ( 1 + 4 + 10 )
M chia hết cho 5 ( đpcm )
A chia hết cho 3 vì
A=2+2^2+2^3+...+2^10
A = ( 2 + 2^2 ) + (2^3 + 2^4 ) + ...+ (2^9 + 2^10)
A = 1 . (1 + 2) + 2^3 . ( 1 + 2 ) + ...+2^9 . ( 1+2 )
A = 1.3 + 2^3 . 3 +...+ 2^9 . 3
A = ( 1 + 2^3 + ...+ 2^9 ) . 3 chia hết cho 3 ( vì 3 chia hết cho 3)
vậy A chia hết cho 3
\(a,\)\(M=2+2^2+2^3+2^4+...+2^{2017}+2^{2018}\)
\(2M=2^2+2^3+2^4+2^5+....+2^{2018}+2^{2019}\)
\(M=2^{2019}-2\)
\(b,\)\(M=2+2^2+2^3+2^4+....+2^{2017}+2^{2018}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{2017}+2^{2018}\right)\)
\(=2\left(2+1\right)+2^3\left(2+1\right)+....+2^{2017}\left(2+1\right)\)
\(=3\left(2+2^3+...+2^{2017}\right)⋮3\)