\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2023

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)

9 tháng 3 2018

Ta có: \(\dfrac{1}{a}-\dfrac{1}{a+1}=\dfrac{a+1}{a\left(a+1\right)}-\dfrac{a}{a\left(a+1\right)}\)

\(=\dfrac{a+1-a}{a\left(a+1\right)}\)

\(=\dfrac{1}{a\left(a+1\right)}\) (đpcm)

Ta được:

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+...-\dfrac{1}{100}\) \(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

17 tháng 4 2017

A = \(\dfrac{9}{1.2}\)+ \(\dfrac{9}{2.3}\)+\(\dfrac{9}{3.4}\)+......+\(\dfrac{99}{99.100}\)

A = 9( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.......+\(\dfrac{1}{99.100}\))

A = 9( 1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+........+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\))

A = 9 ( 1 - \(\dfrac{1}{100}\))

A = 9 . \(\dfrac{99}{100}\)

A = \(\dfrac{891}{100}\)

18 tháng 4 2017

\(A=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+\dfrac{9}{3\cdot4}+...+\dfrac{9}{98\cdot99}+\dfrac{9}{99\cdot100}\)

\(=9\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)

\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=9\left(1-\dfrac{1}{100}\right)\)

\(=9\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)

\(=9\cdot\dfrac{99}{100}\)

\(=\dfrac{891}{100}\)

5 tháng 3 2018

a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)

=\(\dfrac{1}{1}+0+0+...+0-\dfrac{1}{100}\)

=\(1-\dfrac{1}{100}\)

= \(\dfrac{99}{100}\)

6 tháng 3 2018

a) 11.2+12.3+13.4+....+199.10011.2+12.3+13.4+....+199.100

= 11−12+12−13+13−14+....+199−110011−12+12−13+13−14+....+199−1100

=11+0+0+...+0−110011+0+0+...+0−1100

=1−11001−1100

= 99100

25 tháng 6 2017

\(B=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)

\(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)

(do \(\dfrac{1}{a.\left(a+1\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với \(a\in N\)*)

\(B=1-\dfrac{1}{100}=\dfrac{99}{100}\)

Chúc bạn học tốt!!!

25 tháng 6 2017

\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..............+\dfrac{1}{99.100}\)

\(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+................+\dfrac{1}{99}-\dfrac{1}{100}\)

\(B=1-\dfrac{1}{100}\)

\(B=\dfrac{99}{100}\)

10 tháng 6 2017

1)Tính

a)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{9.10}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)

b)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.........+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..............+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

2) tìm x

\(a\)) \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}\)\(=\dfrac{9}{5}\)

\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)

\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{7}{5}-\dfrac{7}{5}\)

\(\dfrac{4}{5}x=0\)

\(x=0:\dfrac{4}{5}\)

\(x=0\)

b)\(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)

\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)

\(\dfrac{2}{5}x=\dfrac{31}{10}\)

\(x=\dfrac{31}{10}:\dfrac{2}{5}\)

\(x=\dfrac{31}{4}\)

10 tháng 6 2017

1. Tính:

a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

= \(\dfrac{1}{1}-\dfrac{1}{10}\)

= \(\dfrac{10}{10}-\dfrac{1}{10}\)

= \(\dfrac{9}{10}\)

b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

= \(\dfrac{1}{1}-\dfrac{1}{100}\)

= \(\dfrac{100}{100}-\dfrac{1}{100}\)

= \(\dfrac{99}{100}\)

2. Tìm x, biết:

a. \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}\)

\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)

\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{7}{5}+\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{14}{5}\)

\(x=\dfrac{14}{5}:\dfrac{4}{5}\)

\(x=\dfrac{14}{5}.\dfrac{5}{4}\)

\(x=14.\dfrac{1}{4}\)

\(x=\dfrac{14}{4}\)

Vậy \(x=\dfrac{14}{4}\)

b. \(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)

\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)

\(\dfrac{2}{5}x=\dfrac{32}{20}+\dfrac{30}{20}\)

\(\dfrac{2}{5}x=\dfrac{62}{20}\)

\(\dfrac{2}{5}x=\dfrac{31}{10}\)

\(x=\dfrac{31}{10}:\dfrac{2}{5}\)

\(x=\dfrac{31}{10}.\dfrac{5}{2}\)

\(x=\dfrac{31}{2}.\dfrac{2}{2}\)

\(x=\dfrac{31}{2}.1\)

\(x=\dfrac{31}{2}\)

Vậy \(x=\dfrac{31}{2}\)

bài này mk tự làm ko sao chép trên mạnghihi

nếu thấy đúng thì tick đúng cho mk nhavui

a: \(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2007}-\dfrac{1}{2008}=1-\dfrac{1}{2008}=\dfrac{2007}{2008}\)

b: \(Q=\dfrac{7}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2009\cdot2011}\right)\)

\(=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)

\(=\dfrac{7}{2}\cdot\dfrac{2010}{2011}\simeq3,50\)

1 tháng 5 2018

a, A = 1 - 1/2 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/2017 - 1/2018

A = 1 - 1/2018 = 2017/2018

b, B = 5/2 . ( 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/2016 -1/2018)

B= 5/2 . ( 1/2 - 1/ 2018 )

B = 504/1009

c, C = 1/3.6 + 1/ 6.9 + 1/ 9.12 + ... + 1/ 30.33

C= 1/3 - 1/6 + 1/6 - 1/ 9 + 1/9 - 1/12 + ... + 1/30 - 1/33

C = 1/3 - 1/33

C= 10/33

1 tháng 5 2018

phan B mk quên nhân với 5/2

lấy 5/2 . 504/1009 = 1260/1009

25 tháng 4 2018

A = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

A=\(\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}\)

25 tháng 4 2018

B = \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{49.51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{51}=\dfrac{51}{102}-\dfrac{2}{102}=\dfrac{49}{102}\)

16 tháng 10 2017

\(a=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}\)